Yanhong Liu, Pan Liu, Lifeng Gao, Yushan Li, Xueni Ren, Jizeng Jia, Lei Wang, Xu Zheng, Yiping Tong, Hongcui Pei, Zefu Lu
{"title":"冬小麦春化顺式调控元件的表观基因组鉴定","authors":"Yanhong Liu, Pan Liu, Lifeng Gao, Yushan Li, Xueni Ren, Jizeng Jia, Lei Wang, Xu Zheng, Yiping Tong, Hongcui Pei, Zefu Lu","doi":"10.1186/s13059-024-03342-3","DOIUrl":null,"url":null,"abstract":"Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues—leaf, axillary bud, and shoot apex—during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. Our study offers critical insights into wheat vernalization’s epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"48 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Epigenomic identification of vernalization cis-regulatory elements in winter wheat\",\"authors\":\"Yanhong Liu, Pan Liu, Lifeng Gao, Yushan Li, Xueni Ren, Jizeng Jia, Lei Wang, Xu Zheng, Yiping Tong, Hongcui Pei, Zefu Lu\",\"doi\":\"10.1186/s13059-024-03342-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues—leaf, axillary bud, and shoot apex—during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. Our study offers critical insights into wheat vernalization’s epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03342-3\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03342-3","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Epigenomic identification of vernalization cis-regulatory elements in winter wheat
Winter wheat undergoes vernalization, a process activated by prolonged exposure to low temperatures. During this phase, flowering signals are generated and transported to the apical meristems, stimulating the transition to the inflorescence meristem while inhibiting tiller bud elongation. Although some vernalization genes have been identified, the key cis-regulatory elements and precise mechanisms governing this process in wheat remain largely unknown. In this study, we construct extensive epigenomic and transcriptomic profiling across multiple tissues—leaf, axillary bud, and shoot apex—during the vernalization of winter wheat. Epigenetic modifications play a crucial role in eliciting tissue-specific responses and sub-genome-divergent expressions during vernalization. Notably, we observe that H3K27me3 primarily regulates vernalization-induced genes and has limited influence on vernalization-repressed genes. The integration of these datasets enables the identification of 10,600 putative vernalization-related regulatory elements including distal accessible chromatin regions (ACRs) situated 30Kb upstream of VRN3, contributing to the construction of a comprehensive regulatory network. Furthermore, we discover that TaSPL7/15, integral components of the aging-related flowering pathway, interact with the VRN1 promoter and VRN3 distal regulatory elements. These interactions finely regulate their expressions, consequently impacting the vernalization process and flowering. Our study offers critical insights into wheat vernalization’s epigenomic dynamics and identifies the putative regulatory elements crucial for developing wheat germplasm with varied vernalization characteristics. It also establishes a vernalization-related transcriptional network, and uncovers that TaSPL7/15 from the aging pathway participates in vernalization by directly binding to the VRN1 promoter and VRN3 distal regulatory elements.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.