{"title":"蚊子中的转座子和转基因磨难:piRNA 比例透视。","authors":"Nelson C Lau, Vanessa M Macias","doi":"10.3390/dna4020006","DOIUrl":null,"url":null,"abstract":"<p><p>Mosquitoes, like <i>Drosophila</i>, are dipterans, the order of \"true flies\" characterized by a single set of two wings. <i>Drosophila</i> are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in <i>Drosophila</i> but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of <i>Drosophila</i> and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in <i>Drosophila</i>. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in <i>Drosophila</i>, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.</p>","PeriodicalId":72835,"journal":{"name":"DNA","volume":"4 2","pages":"104-128"},"PeriodicalIF":0.0000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286205/pdf/","citationCount":"0","resultStr":"{\"title\":\"Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions.\",\"authors\":\"Nelson C Lau, Vanessa M Macias\",\"doi\":\"10.3390/dna4020006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Mosquitoes, like <i>Drosophila</i>, are dipterans, the order of \\\"true flies\\\" characterized by a single set of two wings. <i>Drosophila</i> are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in <i>Drosophila</i> but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of <i>Drosophila</i> and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in <i>Drosophila</i>. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in <i>Drosophila</i>, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.</p>\",\"PeriodicalId\":72835,\"journal\":{\"name\":\"DNA\",\"volume\":\"4 2\",\"pages\":\"104-128\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11286205/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"DNA\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/dna4020006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"DNA","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/dna4020006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/30 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
Transposon and Transgene Tribulations in Mosquitoes: A Perspective of piRNA Proportions.
Mosquitoes, like Drosophila, are dipterans, the order of "true flies" characterized by a single set of two wings. Drosophila are prime model organisms for biomedical research, while mosquito researchers struggle to establish robust molecular biology in these that are arguably the most dangerous vectors of human pathogens. Both insects utilize the RNA interference (RNAi) pathway to generate small RNAs to silence transposons and viruses, yet details are emerging that several RNAi features are unique to each insect family, such as how culicine mosquitoes have evolved extreme genomic feature differences connected to their unique RNAi features. A major technical difference in the molecular genetic studies of these insects is that generating stable transgenic animals are routine in Drosophila but still variable in stability in mosquitoes, despite genomic DNA-editing advances. By comparing and contrasting the differences in the RNAi pathways of Drosophila and mosquitoes, in this review we propose a hypothesis that transgene DNAs are possibly more intensely targeted by mosquito RNAi pathways and chromatin regulatory pathways than in Drosophila. We review the latest findings on mosquito RNAi pathways, which are still much less well understood than in Drosophila, and we speculate that deeper study into how mosquitoes modulate transposons and viruses with Piwi-interacting RNAs (piRNAs) will yield clues to improving transgene DNA expression stability in transgenic mosquitoes.