与溃疡性结肠炎有关的核心微生物相关蛋白与细胞因子相互作用,对肠道细菌产生协同或拮抗作用。

IF 10.8 1区 环境科学与生态学 Q1 ECOLOGY
Ting Zhang, Hang Zhong, Lu Lin, Zhiyan Zhang, Kewen Xue, Feixiang He, Yingshu Luo, Panpan Wang, Zhi Zhao, Li Cong, Pengfei Pang, Xiaofeng Li, Hong Shan, Zhixiang Yan
{"title":"与溃疡性结肠炎有关的核心微生物相关蛋白与细胞因子相互作用,对肠道细菌产生协同或拮抗作用。","authors":"Ting Zhang, Hang Zhong, Lu Lin, Zhiyan Zhang, Kewen Xue, Feixiang He, Yingshu Luo, Panpan Wang, Zhi Zhao, Li Cong, Pengfei Pang, Xiaofeng Li, Hong Shan, Zhixiang Yan","doi":"10.1093/ismejo/wrae146","DOIUrl":null,"url":null,"abstract":"<p><p>Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is associated with a loss or an imbalance of host-microorganism interactions. However, such interactions at protein levels remain largely unknown. Here, we applied a depletion-assisted metaproteomics approach to obtain in-depth host-microbiome association networks of IBD, where the core host proteins shifted from those maintaining mucosal homeostasis in controls to those involved in inflammation, proteolysis, and intestinal barrier in IBD. Microbial nodes such as short-chain fatty-acid producer-related host-microbial crosstalk were lost or suppressed by inflammatory proteins in IBD. Guided by protein-protein association networks, we employed proteomics and lipidomics to investigate the effects of UC-related core proteins S100A8, S100A9, and cytokines (IL-1β, IL-6, and TNF-α) on gut bacteria. These proteins suppressed purine nucleotide biosynthesis in stool-derived in vitro communities, which was also reduced in IBD stool samples. Single species study revealed that S100A8, S100A9, and cytokines can synergistically or antagonistically alter gut bacteria intracellular and secreted proteome, with combined S100A8 and S100A9 potently inhibiting beneficial Bifidobacterium adolescentis. Furthermore, these inflammatory proteins only altered the extracellular but not intracellular proteins of Ruminococcus gnavus. Generally, S100A8 induced more significant bacterial proteome changes than S100A9, IL-1β, IL-6, and TNF-α but gut bacteria degrade significantly more S100A8 than S100A9 in the presence of both proteins. Among the investigated species, distinct lipid alterations were only observed in Bacteroides vulgatus treated with combined S100A8, S100A9, and cytokines. These results provided a valuable resource of inflammatory protein-centric host-microbial molecular interactions.</p>","PeriodicalId":50271,"journal":{"name":"ISME Journal","volume":" ","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360980/pdf/","citationCount":"0","resultStr":"{\"title\":\"Core microbiome-associated proteins associated with ulcerative colitis interact with cytokines for synergistic or antagonistic effects on gut bacteria.\",\"authors\":\"Ting Zhang, Hang Zhong, Lu Lin, Zhiyan Zhang, Kewen Xue, Feixiang He, Yingshu Luo, Panpan Wang, Zhi Zhao, Li Cong, Pengfei Pang, Xiaofeng Li, Hong Shan, Zhixiang Yan\",\"doi\":\"10.1093/ismejo/wrae146\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is associated with a loss or an imbalance of host-microorganism interactions. However, such interactions at protein levels remain largely unknown. Here, we applied a depletion-assisted metaproteomics approach to obtain in-depth host-microbiome association networks of IBD, where the core host proteins shifted from those maintaining mucosal homeostasis in controls to those involved in inflammation, proteolysis, and intestinal barrier in IBD. Microbial nodes such as short-chain fatty-acid producer-related host-microbial crosstalk were lost or suppressed by inflammatory proteins in IBD. Guided by protein-protein association networks, we employed proteomics and lipidomics to investigate the effects of UC-related core proteins S100A8, S100A9, and cytokines (IL-1β, IL-6, and TNF-α) on gut bacteria. These proteins suppressed purine nucleotide biosynthesis in stool-derived in vitro communities, which was also reduced in IBD stool samples. Single species study revealed that S100A8, S100A9, and cytokines can synergistically or antagonistically alter gut bacteria intracellular and secreted proteome, with combined S100A8 and S100A9 potently inhibiting beneficial Bifidobacterium adolescentis. Furthermore, these inflammatory proteins only altered the extracellular but not intracellular proteins of Ruminococcus gnavus. Generally, S100A8 induced more significant bacterial proteome changes than S100A9, IL-1β, IL-6, and TNF-α but gut bacteria degrade significantly more S100A8 than S100A9 in the presence of both proteins. Among the investigated species, distinct lipid alterations were only observed in Bacteroides vulgatus treated with combined S100A8, S100A9, and cytokines. These results provided a valuable resource of inflammatory protein-centric host-microbial molecular interactions.</p>\",\"PeriodicalId\":50271,\"journal\":{\"name\":\"ISME Journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":10.8000,\"publicationDate\":\"2024-01-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11360980/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISME Journal\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1093/ismejo/wrae146\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISME Journal","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/ismejo/wrae146","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

包括克罗恩病(CD)和溃疡性结肠炎(UC)在内的炎症性肠病(IBD)与宿主-微生物相互作用的丧失或失衡有关。然而,这种蛋白质水平上的相互作用在很大程度上仍不为人所知。在这里,我们采用了一种耗竭辅助元蛋白组学方法,获得了IBD的宿主-微生物组深度关联网络,其中核心宿主蛋白从对照组中维持粘膜稳态的蛋白转变为IBD中参与炎症、蛋白分解和肠道屏障的蛋白。微生物节点(如与短链脂肪酸生产者相关的宿主-微生物串联)在 IBD 中消失或被炎症蛋白抑制。在蛋白质-蛋白质关联网络的指导下,我们利用蛋白质组学和脂质组学研究了UC相关核心蛋白S100A8、S100A9和细胞因子(IL-1β、IL-6和TNF-α)对肠道细菌的影响。这些蛋白质抑制了粪便来源的体外群落中嘌呤核苷酸的生物合成,而在 IBD 粪便样本中,嘌呤核苷酸的生物合成全部减少。单物种研究显示,S100A8、S100A9 和细胞因子可协同或拮抗地改变肠道细菌胞内和分泌的蛋白质组,其中 S100A8 和 S100A9 可有效抑制有益的青春双歧杆菌。此外,这些炎症蛋白只改变小反刍球菌的胞外蛋白,而不改变其胞内蛋白。一般来说,S100A8 比 S100A9、IL-1β、IL-6 和 TNF-α 引发的细菌蛋白质组变化更显著。但在两种蛋白都存在的情况下,肠道细菌降解 S100A8 的数量明显多于 S100A9。在所研究的物种中,只有在用 S100A8、S100A9 和细胞因子联合处理的 Bacteroides vulgatus 中观察到明显的脂质改变。这些结果为以炎症蛋白为中心的宿主-微生物分子相互作用提供了宝贵的资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Core microbiome-associated proteins associated with ulcerative colitis interact with cytokines for synergistic or antagonistic effects on gut bacteria.

Inflammatory bowel disease (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), is associated with a loss or an imbalance of host-microorganism interactions. However, such interactions at protein levels remain largely unknown. Here, we applied a depletion-assisted metaproteomics approach to obtain in-depth host-microbiome association networks of IBD, where the core host proteins shifted from those maintaining mucosal homeostasis in controls to those involved in inflammation, proteolysis, and intestinal barrier in IBD. Microbial nodes such as short-chain fatty-acid producer-related host-microbial crosstalk were lost or suppressed by inflammatory proteins in IBD. Guided by protein-protein association networks, we employed proteomics and lipidomics to investigate the effects of UC-related core proteins S100A8, S100A9, and cytokines (IL-1β, IL-6, and TNF-α) on gut bacteria. These proteins suppressed purine nucleotide biosynthesis in stool-derived in vitro communities, which was also reduced in IBD stool samples. Single species study revealed that S100A8, S100A9, and cytokines can synergistically or antagonistically alter gut bacteria intracellular and secreted proteome, with combined S100A8 and S100A9 potently inhibiting beneficial Bifidobacterium adolescentis. Furthermore, these inflammatory proteins only altered the extracellular but not intracellular proteins of Ruminococcus gnavus. Generally, S100A8 induced more significant bacterial proteome changes than S100A9, IL-1β, IL-6, and TNF-α but gut bacteria degrade significantly more S100A8 than S100A9 in the presence of both proteins. Among the investigated species, distinct lipid alterations were only observed in Bacteroides vulgatus treated with combined S100A8, S100A9, and cytokines. These results provided a valuable resource of inflammatory protein-centric host-microbial molecular interactions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ISME Journal
ISME Journal 环境科学-生态学
CiteScore
22.10
自引率
2.70%
发文量
171
审稿时长
2.6 months
期刊介绍: The ISME Journal covers the diverse and integrated areas of microbial ecology. We encourage contributions that represent major advances for the study of microbial ecosystems, communities, and interactions of microorganisms in the environment. Articles in The ISME Journal describe pioneering discoveries of wide appeal that enhance our understanding of functional and mechanistic relationships among microorganisms, their communities, and their habitats.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信