利用可穿戴运动传感器和人工神经网络自动检测强直性癫痫发作。

IF 6.6 1区 医学 Q1 CLINICAL NEUROLOGY
Epilepsia Pub Date : 2024-07-30 DOI:10.1111/epi.18077
Sidsel Armand Larsen, Daniel Højrup Johansen, Sándor Beniczky
{"title":"利用可穿戴运动传感器和人工神经网络自动检测强直性癫痫发作。","authors":"Sidsel Armand Larsen,&nbsp;Daniel Højrup Johansen,&nbsp;Sándor Beniczky","doi":"10.1111/epi.18077","DOIUrl":null,"url":null,"abstract":"<p>Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large-scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.</p>","PeriodicalId":11768,"journal":{"name":"Epilepsia","volume":null,"pages":null},"PeriodicalIF":6.6000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/epi.18077","citationCount":"0","resultStr":"{\"title\":\"Automated detection of tonic seizures using wearable movement sensor and artificial neural network\",\"authors\":\"Sidsel Armand Larsen,&nbsp;Daniel Højrup Johansen,&nbsp;Sándor Beniczky\",\"doi\":\"10.1111/epi.18077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large-scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.</p>\",\"PeriodicalId\":11768,\"journal\":{\"name\":\"Epilepsia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.6000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/epi.18077\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Epilepsia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/epi.18077\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Epilepsia","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/epi.18077","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

尽管目前已有几种经过验证的可穿戴设备可用于检测全身强直阵挛发作,但强直发作的自动检测仍是一项挑战。在这项第一阶段研究中,我们报告了使用可穿戴腕带运动传感器(加速度计和陀螺仪)自动检测有明显临床表现的强直性发作的人工神经网络(ANN)模型的开发和验证情况。这项研究的前瞻性记录数据集包括 15 名患者(7 名男性,年龄 3-46 岁,中位数 = 19 岁)的 70 次强直性发作。我们训练了一个 ANN 模型来检测强直性癫痫发作。独立测试数据集由夜间记录组成,包括三名患者的 10 次强直性发作和三名无发作受试者的附加(干扰)数据。ANN 模型检测到有明显临床表现的夜间强直性癫痫发作的灵敏度为 100%(95% 置信区间 = 69%-100%),平均误报率为 0.16/夜。平均检测潜伏期为 14.1 秒(中位数 = 10 秒),最长为 47 秒。这些数据表明,使用方差分析网络的运动传感器可以可靠地检测到夜间强直性癫痫发作。需要进行大规模、多中心前瞻性(第 3 期)试验,为该设备和检测算法的临床实用性提供有力证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Automated detection of tonic seizures using wearable movement sensor and artificial neural network

Automated detection of tonic seizures using wearable movement sensor and artificial neural network

Although several validated wearable devices are available for detection of generalized tonic–clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neural network (ANN) model for automated detection of tonic seizures with visible clinical manifestation using a wearable wristband movement sensor (accelerometer and gyroscope). The dataset prospectively recorded for this study included 70 tonic seizures from 15 patients (seven males, age 3–46 years, median = 19 years). We trained an ANN model to detect tonic seizures. The independent test dataset comprised nocturnal recordings, including 10 tonic seizures from three patients and additional (distractor) data from three subjects without seizures. The ANN model detected nocturnal tonic seizures with visible clinical manifestation with a sensitivity of 100% (95% confidence interval = 69%–100%) and with an average false alarm rate of .16/night. The mean detection latency was 14.1 s (median = 10 s), with a maximum of 47 s. These data suggest that nocturnal tonic seizures can be reliably detected with movement sensors using ANN. Large-scale, multicenter prospective (phase 3) trials are needed to provide compelling evidence for the clinical utility of this device and detection algorithm.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Epilepsia
Epilepsia 医学-临床神经学
CiteScore
10.90
自引率
10.70%
发文量
319
审稿时长
2-4 weeks
期刊介绍: Epilepsia is the leading, authoritative source for innovative clinical and basic science research for all aspects of epilepsy and seizures. In addition, Epilepsia publishes critical reviews, opinion pieces, and guidelines that foster understanding and aim to improve the diagnosis and treatment of people with seizures and epilepsy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信