丹麦献血者糖尿病确诊前的代谢物和蛋白质纵向轨迹:一项巢式病例对照研究。

IF 8.4 1区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Diabetologia Pub Date : 2024-10-01 Epub Date: 2024-07-30 DOI:10.1007/s00125-024-06231-3
Agnete T Lundgaard, David Westergaard, Timo Röder, Kristoffer S Burgdorf, Margit H Larsen, Michael Schwinn, Lise W Thørner, Erik Sørensen, Kaspar R Nielsen, Henrik Hjalgrim, Christian Erikstrup, Bertram D Kjerulff, Lotte Hindhede, Thomas F Hansen, Mette Nyegaard, Ewan Birney, Hreinn Stefansson, Kári Stefánsson, Ole B V Pedersen, Sisse R Ostrowski, Peter Rossing, Henrik Ullum, Laust H Mortensen, Dorte Vistisen, Karina Banasik, Søren Brunak
{"title":"丹麦献血者糖尿病确诊前的代谢物和蛋白质纵向轨迹:一项巢式病例对照研究。","authors":"Agnete T Lundgaard, David Westergaard, Timo Röder, Kristoffer S Burgdorf, Margit H Larsen, Michael Schwinn, Lise W Thørner, Erik Sørensen, Kaspar R Nielsen, Henrik Hjalgrim, Christian Erikstrup, Bertram D Kjerulff, Lotte Hindhede, Thomas F Hansen, Mette Nyegaard, Ewan Birney, Hreinn Stefansson, Kári Stefánsson, Ole B V Pedersen, Sisse R Ostrowski, Peter Rossing, Henrik Ullum, Laust H Mortensen, Dorte Vistisen, Karina Banasik, Søren Brunak","doi":"10.1007/s00125-024-06231-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims/hypothesis: </strong>Metabolic risk factors and plasma biomarkers for diabetes have previously been shown to change prior to a clinical diabetes diagnosis. However, these markers only cover a small subset of molecular biomarkers linked to the disease. In this study, we aimed to profile a more comprehensive set of molecular biomarkers and explore their temporal association with incident diabetes.</p><p><strong>Methods: </strong>We performed a targeted analysis of 54 proteins and 171 metabolites and lipoprotein particles measured in three sequential samples spanning up to 11 years of follow-up in 324 individuals with incident diabetes and 359 individuals without diabetes in the Danish Blood Donor Study (DBDS) matched for sex and birth year distribution. We used linear mixed-effects models to identify temporal changes before a diabetes diagnosis, either for any incident diabetes diagnosis or for type 1 and type 2 diabetes mellitus diagnoses specifically. We further performed linear and non-linear feature selection, adding 28 polygenic risk scores to the biomarker pool. We tested the time-to-event prediction gain of the biomarkers with the highest variable importance, compared with selected clinical covariates and plasma glucose.</p><p><strong>Results: </strong>We identified two proteins and 16 metabolites and lipoprotein particles whose levels changed temporally before diabetes diagnosis and for which the estimated marginal means were significant after FDR adjustment. Sixteen of these have not previously been described. Additionally, 75 biomarkers were consistently higher or lower in the years before a diabetes diagnosis. We identified a single temporal biomarker for type 1 diabetes, IL-17A/F, a cytokine that is associated with multiple other autoimmune diseases. Inclusion of 12 biomarkers improved the 10-year prediction of a diabetes diagnosis (i.e. the area under the receiver operating curve increased from 0.79 to 0.84), compared with clinical information and plasma glucose alone.</p><p><strong>Conclusions/interpretation: </strong>Systemic molecular changes manifest in plasma several years before a diabetes diagnosis. A particular subset of biomarkers shows distinct, time-dependent patterns, offering potential as predictive markers for diabetes onset. Notably, these biomarkers show shared and distinct patterns between type 1 diabetes and type 2 diabetes. After independent replication, our findings may be used to develop new clinical prediction models.</p>","PeriodicalId":11164,"journal":{"name":"Diabetologia","volume":null,"pages":null},"PeriodicalIF":8.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446992/pdf/","citationCount":"0","resultStr":"{\"title\":\"Longitudinal metabolite and protein trajectories prior to diabetes mellitus diagnosis in Danish blood donors: a nested case-control study.\",\"authors\":\"Agnete T Lundgaard, David Westergaard, Timo Röder, Kristoffer S Burgdorf, Margit H Larsen, Michael Schwinn, Lise W Thørner, Erik Sørensen, Kaspar R Nielsen, Henrik Hjalgrim, Christian Erikstrup, Bertram D Kjerulff, Lotte Hindhede, Thomas F Hansen, Mette Nyegaard, Ewan Birney, Hreinn Stefansson, Kári Stefánsson, Ole B V Pedersen, Sisse R Ostrowski, Peter Rossing, Henrik Ullum, Laust H Mortensen, Dorte Vistisen, Karina Banasik, Søren Brunak\",\"doi\":\"10.1007/s00125-024-06231-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims/hypothesis: </strong>Metabolic risk factors and plasma biomarkers for diabetes have previously been shown to change prior to a clinical diabetes diagnosis. However, these markers only cover a small subset of molecular biomarkers linked to the disease. In this study, we aimed to profile a more comprehensive set of molecular biomarkers and explore their temporal association with incident diabetes.</p><p><strong>Methods: </strong>We performed a targeted analysis of 54 proteins and 171 metabolites and lipoprotein particles measured in three sequential samples spanning up to 11 years of follow-up in 324 individuals with incident diabetes and 359 individuals without diabetes in the Danish Blood Donor Study (DBDS) matched for sex and birth year distribution. We used linear mixed-effects models to identify temporal changes before a diabetes diagnosis, either for any incident diabetes diagnosis or for type 1 and type 2 diabetes mellitus diagnoses specifically. We further performed linear and non-linear feature selection, adding 28 polygenic risk scores to the biomarker pool. We tested the time-to-event prediction gain of the biomarkers with the highest variable importance, compared with selected clinical covariates and plasma glucose.</p><p><strong>Results: </strong>We identified two proteins and 16 metabolites and lipoprotein particles whose levels changed temporally before diabetes diagnosis and for which the estimated marginal means were significant after FDR adjustment. Sixteen of these have not previously been described. Additionally, 75 biomarkers were consistently higher or lower in the years before a diabetes diagnosis. We identified a single temporal biomarker for type 1 diabetes, IL-17A/F, a cytokine that is associated with multiple other autoimmune diseases. Inclusion of 12 biomarkers improved the 10-year prediction of a diabetes diagnosis (i.e. the area under the receiver operating curve increased from 0.79 to 0.84), compared with clinical information and plasma glucose alone.</p><p><strong>Conclusions/interpretation: </strong>Systemic molecular changes manifest in plasma several years before a diabetes diagnosis. A particular subset of biomarkers shows distinct, time-dependent patterns, offering potential as predictive markers for diabetes onset. Notably, these biomarkers show shared and distinct patterns between type 1 diabetes and type 2 diabetes. After independent replication, our findings may be used to develop new clinical prediction models.</p>\",\"PeriodicalId\":11164,\"journal\":{\"name\":\"Diabetologia\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446992/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Diabetologia\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s00125-024-06231-3\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/30 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Diabetologia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00125-024-06231-3","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/30 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

目的/假设:糖尿病的代谢风险因素和血浆生物标志物曾被证明会在临床诊断糖尿病之前发生变化。然而,这些标志物只涵盖了与该疾病相关的一小部分分子生物标志物。在这项研究中,我们的目标是分析更全面的分子生物标志物,并探索它们与糖尿病发病的时间关联:我们对丹麦献血者研究(DBDS)中324名糖尿病患者和359名非糖尿病患者的三个连续样本中测量到的54种蛋白质、171种代谢物和脂蛋白颗粒进行了有针对性的分析,这些样本的性别和出生年份分布相匹配,随访时间长达11年。我们使用线性混合效应模型来确定糖尿病诊断前的时间变化,无论是针对任何糖尿病事件诊断,还是针对 1 型和 2 型糖尿病诊断。我们进一步进行了线性和非线性特征选择,将 28 个多基因风险评分添加到生物标志物库中。与选定的临床协变量和血浆葡萄糖相比,我们测试了变量重要性最高的生物标志物的时间到事件预测收益:结果:我们确定了两种蛋白质和 16 种代谢物及脂蛋白颗粒,它们的水平在糖尿病确诊前发生了时间性变化,而且经过 FDR 调整后,其估计边际均值具有显著性。其中有 16 种生物标志物以前未曾报道过。此外,有 75 种生物标志物在糖尿病确诊前几年的水平持续升高或降低。我们发现了 1 型糖尿病的一个时间生物标记物 IL-17A/F,这是一种与多种其他自身免疫性疾病相关的细胞因子。与单纯的临床信息和血浆葡萄糖相比,纳入 12 个生物标志物可提高糖尿病诊断的 10 年预测能力(即接收器工作曲线下的面积从 0.79 增加到 0.84):结论/解释:血浆中的系统性分子变化在糖尿病确诊前数年就已显现。一个特定的生物标志物子集显示出与时间相关的独特模式,具有作为糖尿病发病预测标志物的潜力。值得注意的是,这些生物标志物在 1 型糖尿病和 2 型糖尿病之间显示出共同和独特的模式。在独立复制之后,我们的发现可用于开发新的临床预测模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Longitudinal metabolite and protein trajectories prior to diabetes mellitus diagnosis in Danish blood donors: a nested case-control study.

Longitudinal metabolite and protein trajectories prior to diabetes mellitus diagnosis in Danish blood donors: a nested case-control study.

Aims/hypothesis: Metabolic risk factors and plasma biomarkers for diabetes have previously been shown to change prior to a clinical diabetes diagnosis. However, these markers only cover a small subset of molecular biomarkers linked to the disease. In this study, we aimed to profile a more comprehensive set of molecular biomarkers and explore their temporal association with incident diabetes.

Methods: We performed a targeted analysis of 54 proteins and 171 metabolites and lipoprotein particles measured in three sequential samples spanning up to 11 years of follow-up in 324 individuals with incident diabetes and 359 individuals without diabetes in the Danish Blood Donor Study (DBDS) matched for sex and birth year distribution. We used linear mixed-effects models to identify temporal changes before a diabetes diagnosis, either for any incident diabetes diagnosis or for type 1 and type 2 diabetes mellitus diagnoses specifically. We further performed linear and non-linear feature selection, adding 28 polygenic risk scores to the biomarker pool. We tested the time-to-event prediction gain of the biomarkers with the highest variable importance, compared with selected clinical covariates and plasma glucose.

Results: We identified two proteins and 16 metabolites and lipoprotein particles whose levels changed temporally before diabetes diagnosis and for which the estimated marginal means were significant after FDR adjustment. Sixteen of these have not previously been described. Additionally, 75 biomarkers were consistently higher or lower in the years before a diabetes diagnosis. We identified a single temporal biomarker for type 1 diabetes, IL-17A/F, a cytokine that is associated with multiple other autoimmune diseases. Inclusion of 12 biomarkers improved the 10-year prediction of a diabetes diagnosis (i.e. the area under the receiver operating curve increased from 0.79 to 0.84), compared with clinical information and plasma glucose alone.

Conclusions/interpretation: Systemic molecular changes manifest in plasma several years before a diabetes diagnosis. A particular subset of biomarkers shows distinct, time-dependent patterns, offering potential as predictive markers for diabetes onset. Notably, these biomarkers show shared and distinct patterns between type 1 diabetes and type 2 diabetes. After independent replication, our findings may be used to develop new clinical prediction models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Diabetologia
Diabetologia 医学-内分泌学与代谢
CiteScore
18.10
自引率
2.40%
发文量
193
审稿时长
1 months
期刊介绍: Diabetologia, the authoritative journal dedicated to diabetes research, holds high visibility through society membership, libraries, and social media. As the official journal of the European Association for the Study of Diabetes, it is ranked in the top quartile of the 2019 JCR Impact Factors in the Endocrinology & Metabolism category. The journal boasts dedicated and expert editorial teams committed to supporting authors throughout the peer review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信