{"title":"切向流过滤促进了人类红细胞膜碎片的纯化,与离心法相比,切向流过滤更适于从重新封闭的红细胞幽灵中去除未包裹的物质。","authors":"Xiangming Gu, Andre F Palmer","doi":"10.1002/btpr.3501","DOIUrl":null,"url":null,"abstract":"<p><p>The biodistribution of many therapeutics is controlled by the immune system. In addition, some molecules are cytotoxic when not encapsulated inside of larger cellular structures, such as hemoglobin (Hb) encapsulation inside of red blood cells (RBCs). To counter immune system recognition and cytotoxicity, drug delivery systems based on red blood cell membrane fragments (RBCMFs) have been proposed as a strategy for creating immunoprivileged therapeutics. However, the use of RBCMFs for drug delivery applications requires purification of RBCMFs at large scale from lysed RBCs free of their intracellular components. In this study, we were able to successfully use tangential flow filtration (TFF) to remove >99% of cell-free Hb from lysed RBCs at high concentrations (30%-40% v/v), producing RBCMFs that were 2.68 ± 0.17 μm in diameter. We were also able to characterize the RBCMFs more thoroughly than prior work, including measurement of particle zeta potential, along with individual TFF diacycle data on the cell-free Hb concentration in solution and time per diacycle, as well as concentration and size of the RBCMFs. In addition to purifying RBCMFs from lysed RBCs, we utilized a hypertonic solution to reseal purified RBCMFs encapsulating a model protein (Hb) to yield resealed Hb-encapsulated RBC ghosts (Hb-RBCGs). TFF was then compared against centrifugation as an alternative method for removing unencapsulated Hb from Hb-RBCGs, and the effects that each washing method on the resulting Hb-RBCG biophysical properties was assessed.</p>","PeriodicalId":8856,"journal":{"name":"Biotechnology Progress","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tangential flow filtration-facilitated purification of human red blood cell membrane fragments and its preferential use in removing unencapsulated material from resealed red blood cell ghosts compared to centrifugation.\",\"authors\":\"Xiangming Gu, Andre F Palmer\",\"doi\":\"10.1002/btpr.3501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The biodistribution of many therapeutics is controlled by the immune system. In addition, some molecules are cytotoxic when not encapsulated inside of larger cellular structures, such as hemoglobin (Hb) encapsulation inside of red blood cells (RBCs). To counter immune system recognition and cytotoxicity, drug delivery systems based on red blood cell membrane fragments (RBCMFs) have been proposed as a strategy for creating immunoprivileged therapeutics. However, the use of RBCMFs for drug delivery applications requires purification of RBCMFs at large scale from lysed RBCs free of their intracellular components. In this study, we were able to successfully use tangential flow filtration (TFF) to remove >99% of cell-free Hb from lysed RBCs at high concentrations (30%-40% v/v), producing RBCMFs that were 2.68 ± 0.17 μm in diameter. We were also able to characterize the RBCMFs more thoroughly than prior work, including measurement of particle zeta potential, along with individual TFF diacycle data on the cell-free Hb concentration in solution and time per diacycle, as well as concentration and size of the RBCMFs. In addition to purifying RBCMFs from lysed RBCs, we utilized a hypertonic solution to reseal purified RBCMFs encapsulating a model protein (Hb) to yield resealed Hb-encapsulated RBC ghosts (Hb-RBCGs). TFF was then compared against centrifugation as an alternative method for removing unencapsulated Hb from Hb-RBCGs, and the effects that each washing method on the resulting Hb-RBCG biophysical properties was assessed.</p>\",\"PeriodicalId\":8856,\"journal\":{\"name\":\"Biotechnology Progress\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Progress\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/btpr.3501\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Progress","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/btpr.3501","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Tangential flow filtration-facilitated purification of human red blood cell membrane fragments and its preferential use in removing unencapsulated material from resealed red blood cell ghosts compared to centrifugation.
The biodistribution of many therapeutics is controlled by the immune system. In addition, some molecules are cytotoxic when not encapsulated inside of larger cellular structures, such as hemoglobin (Hb) encapsulation inside of red blood cells (RBCs). To counter immune system recognition and cytotoxicity, drug delivery systems based on red blood cell membrane fragments (RBCMFs) have been proposed as a strategy for creating immunoprivileged therapeutics. However, the use of RBCMFs for drug delivery applications requires purification of RBCMFs at large scale from lysed RBCs free of their intracellular components. In this study, we were able to successfully use tangential flow filtration (TFF) to remove >99% of cell-free Hb from lysed RBCs at high concentrations (30%-40% v/v), producing RBCMFs that were 2.68 ± 0.17 μm in diameter. We were also able to characterize the RBCMFs more thoroughly than prior work, including measurement of particle zeta potential, along with individual TFF diacycle data on the cell-free Hb concentration in solution and time per diacycle, as well as concentration and size of the RBCMFs. In addition to purifying RBCMFs from lysed RBCs, we utilized a hypertonic solution to reseal purified RBCMFs encapsulating a model protein (Hb) to yield resealed Hb-encapsulated RBC ghosts (Hb-RBCGs). TFF was then compared against centrifugation as an alternative method for removing unencapsulated Hb from Hb-RBCGs, and the effects that each washing method on the resulting Hb-RBCG biophysical properties was assessed.
期刊介绍:
Biotechnology Progress , an official, bimonthly publication of the American Institute of Chemical Engineers and its technological community, the Society for Biological Engineering, features peer-reviewed research articles, reviews, and descriptions of emerging techniques for the development and design of new processes, products, and devices for the biotechnology, biopharmaceutical and bioprocess industries.
Widespread interest includes application of biological and engineering principles in fields such as applied cellular physiology and metabolic engineering, biocatalysis and bioreactor design, bioseparations and downstream processing, cell culture and tissue engineering, biosensors and process control, bioinformatics and systems biology, biomaterials and artificial organs, stem cell biology and genetics, and plant biology and food science. Manuscripts concerning the design of related processes, products, or devices are also encouraged. Four types of manuscripts are printed in the Journal: Research Papers, Topical or Review Papers, Letters to the Editor, and R & D Notes.