深入分析并通过 DFT 和 SCAPS-1D 提高基于新型无机 RbPbI3 的包光体太阳能电池的光电性能,使其超过 31

IF 2.9 4区 工程技术 Q1 MULTIDISCIPLINARY SCIENCES
Md. Ferdous Rahman, Md. Harun-Or-Rashid, Md. Rasidul Islam, Ahmad Irfan, Aijaz Rasool Chaudhry, Md. Atikur Rahman, Samah Al-Qaisi
{"title":"深入分析并通过 DFT 和 SCAPS-1D 提高基于新型无机 RbPbI3 的包光体太阳能电池的光电性能,使其超过 31","authors":"Md. Ferdous Rahman,&nbsp;Md. Harun-Or-Rashid,&nbsp;Md. Rasidul Islam,&nbsp;Ahmad Irfan,&nbsp;Aijaz Rasool Chaudhry,&nbsp;Md. Atikur Rahman,&nbsp;Samah Al-Qaisi","doi":"10.1002/adts.202400476","DOIUrl":null,"url":null,"abstract":"<p>The inimitable structural, electronic, and optical properties of inorganic cubic rubidium-lead-halide perovskite have obtained significant attention. In this research, novel rubidium-lead-iodide (RbPbI<sub>3</sub>)-based perovskite solar cells incorporating Tin Sulfide (SnS<sub>2</sub>) is investigated as an efficient buffer layer, utilizing both Density Functional Theory (DFT) calculations and SCAPS-1D simulator. Primarily, DFT is used to compute the bandgap, partial density of states (PDOS), and optical properties of the RbPbI<sub>3</sub> absorber, which are then applied in the SCAPS-1D simulator. An optimized Al/FTO/SnS<sub>2</sub>/RbPbI<sub>3</sub>/Au device is systematically studied. Additionally, the effect of various influencing factors are investigated such as layer bulk defect density, interface defect density, doping concentration, and thickness. The highest power conversion efficiency (PCE) of 31.11% is achieved for the SnS<sub>2</sub> Electron Transport Layer (ETL), with a J<sub>SC</sub> of 32.47 mA cm<sup>−2</sup>, V<sub>OC</sub> of 1.10 V, and FF of 87.14% for the Al/FTO/SnS<sub>2</sub>/RbPbI<sub>3</sub>/Au structure. Characteristics of quantum efficiency (QE) are also analyzed. Therefore, SnS<sub>2</sub> ETL demonstrates the robust potential for utilization in high-performance photovoltaic cells based on RbPbI<sub>3</sub> perovskite.</p>","PeriodicalId":7219,"journal":{"name":"Advanced Theory and Simulations","volume":"7 10","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Deep Analysis and Enhancing Photovoltaic Performance Above 31% with New Inorganic RbPbI3-Based Perovskite Solar Cells via DFT and SCAPS-1D\",\"authors\":\"Md. Ferdous Rahman,&nbsp;Md. Harun-Or-Rashid,&nbsp;Md. Rasidul Islam,&nbsp;Ahmad Irfan,&nbsp;Aijaz Rasool Chaudhry,&nbsp;Md. Atikur Rahman,&nbsp;Samah Al-Qaisi\",\"doi\":\"10.1002/adts.202400476\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The inimitable structural, electronic, and optical properties of inorganic cubic rubidium-lead-halide perovskite have obtained significant attention. In this research, novel rubidium-lead-iodide (RbPbI<sub>3</sub>)-based perovskite solar cells incorporating Tin Sulfide (SnS<sub>2</sub>) is investigated as an efficient buffer layer, utilizing both Density Functional Theory (DFT) calculations and SCAPS-1D simulator. Primarily, DFT is used to compute the bandgap, partial density of states (PDOS), and optical properties of the RbPbI<sub>3</sub> absorber, which are then applied in the SCAPS-1D simulator. An optimized Al/FTO/SnS<sub>2</sub>/RbPbI<sub>3</sub>/Au device is systematically studied. Additionally, the effect of various influencing factors are investigated such as layer bulk defect density, interface defect density, doping concentration, and thickness. The highest power conversion efficiency (PCE) of 31.11% is achieved for the SnS<sub>2</sub> Electron Transport Layer (ETL), with a J<sub>SC</sub> of 32.47 mA cm<sup>−2</sup>, V<sub>OC</sub> of 1.10 V, and FF of 87.14% for the Al/FTO/SnS<sub>2</sub>/RbPbI<sub>3</sub>/Au structure. Characteristics of quantum efficiency (QE) are also analyzed. Therefore, SnS<sub>2</sub> ETL demonstrates the robust potential for utilization in high-performance photovoltaic cells based on RbPbI<sub>3</sub> perovskite.</p>\",\"PeriodicalId\":7219,\"journal\":{\"name\":\"Advanced Theory and Simulations\",\"volume\":\"7 10\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Theory and Simulations\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adts.202400476\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Theory and Simulations","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adts.202400476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

无机立方铷-铅-卤化物包晶的独特结构、电子和光学特性备受关注。在这项研究中,利用密度泛函理论(DFT)计算和 SCAPS-1D 模拟器,研究了将硫化锡(SnS2)作为高效缓冲层的新型铷-铅-碘化物(RbPbI3)基透晶太阳能电池。DFT 主要用于计算 RbPbI3 吸收体的带隙、部分状态密度 (PDOS) 和光学特性,然后将其应用于 SCAPS-1D 模拟器。系统研究了一个优化的 Al/FTO/SnS2/RbPbI3/Au 器件。此外,还研究了各种影响因素的作用,如层体缺陷密度、界面缺陷密度、掺杂浓度和厚度。在 Al/FTO/SnS2/RbPbI3/Au 结构中,SnS2 电子传输层(ETL)的功率转换效率(PCE)最高,达到 31.11%,JSC 为 32.47 mA cm-2,VOC 为 1.10 V,FF 为 87.14%。此外,还分析了量子效率(QE)的特征。因此,SnS2 ETL 在基于 RbPbI3 包晶的高性能光伏电池中具有强大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Deep Analysis and Enhancing Photovoltaic Performance Above 31% with New Inorganic RbPbI3-Based Perovskite Solar Cells via DFT and SCAPS-1D

A Deep Analysis and Enhancing Photovoltaic Performance Above 31% with New Inorganic RbPbI3-Based Perovskite Solar Cells via DFT and SCAPS-1D

The inimitable structural, electronic, and optical properties of inorganic cubic rubidium-lead-halide perovskite have obtained significant attention. In this research, novel rubidium-lead-iodide (RbPbI3)-based perovskite solar cells incorporating Tin Sulfide (SnS2) is investigated as an efficient buffer layer, utilizing both Density Functional Theory (DFT) calculations and SCAPS-1D simulator. Primarily, DFT is used to compute the bandgap, partial density of states (PDOS), and optical properties of the RbPbI3 absorber, which are then applied in the SCAPS-1D simulator. An optimized Al/FTO/SnS2/RbPbI3/Au device is systematically studied. Additionally, the effect of various influencing factors are investigated such as layer bulk defect density, interface defect density, doping concentration, and thickness. The highest power conversion efficiency (PCE) of 31.11% is achieved for the SnS2 Electron Transport Layer (ETL), with a JSC of 32.47 mA cm−2, VOC of 1.10 V, and FF of 87.14% for the Al/FTO/SnS2/RbPbI3/Au structure. Characteristics of quantum efficiency (QE) are also analyzed. Therefore, SnS2 ETL demonstrates the robust potential for utilization in high-performance photovoltaic cells based on RbPbI3 perovskite.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Theory and Simulations
Advanced Theory and Simulations Multidisciplinary-Multidisciplinary
CiteScore
5.50
自引率
3.00%
发文量
221
期刊介绍: Advanced Theory and Simulations is an interdisciplinary, international, English-language journal that publishes high-quality scientific results focusing on the development and application of theoretical methods, modeling and simulation approaches in all natural science and medicine areas, including: materials, chemistry, condensed matter physics engineering, energy life science, biology, medicine atmospheric/environmental science, climate science planetary science, astronomy, cosmology method development, numerical methods, statistics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信