{"title":"scCross:通过无缝集成、跨模态生成和硅学探索统一单细胞多组学的深度生成模型","authors":"Xiuhui Yang, Koren K. Mann, Hao Wu, Jun Ding","doi":"10.1186/s13059-024-03338-z","DOIUrl":null,"url":null,"abstract":"Single-cell multi-omics data reveal complex cellular states, providing significant insights into cellular dynamics and disease. Yet, integration of multi-omics data presents challenges. Some modalities have not reached the robustness or clarity of established transcriptomics. Coupled with data scarcity for less established modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross, a tool leveraging variational autoencoders, generative adversarial networks, and the mutual nearest neighbors (MNN) technique for modality alignment. By enabling single-cell cross-modal data generation, multi-omics data simulation, and in silico cellular perturbations, scCross enhances the utility of single-cell multi-omics studies.","PeriodicalId":12611,"journal":{"name":"Genome Biology","volume":"48 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"scCross: a deep generative model for unifying single-cell multi-omics with seamless integration, cross-modal generation, and in silico exploration\",\"authors\":\"Xiuhui Yang, Koren K. Mann, Hao Wu, Jun Ding\",\"doi\":\"10.1186/s13059-024-03338-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Single-cell multi-omics data reveal complex cellular states, providing significant insights into cellular dynamics and disease. Yet, integration of multi-omics data presents challenges. Some modalities have not reached the robustness or clarity of established transcriptomics. Coupled with data scarcity for less established modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross, a tool leveraging variational autoencoders, generative adversarial networks, and the mutual nearest neighbors (MNN) technique for modality alignment. By enabling single-cell cross-modal data generation, multi-omics data simulation, and in silico cellular perturbations, scCross enhances the utility of single-cell multi-omics studies.\",\"PeriodicalId\":12611,\"journal\":{\"name\":\"Genome Biology\",\"volume\":\"48 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Genome Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s13059-024-03338-z\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13059-024-03338-z","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
scCross: a deep generative model for unifying single-cell multi-omics with seamless integration, cross-modal generation, and in silico exploration
Single-cell multi-omics data reveal complex cellular states, providing significant insights into cellular dynamics and disease. Yet, integration of multi-omics data presents challenges. Some modalities have not reached the robustness or clarity of established transcriptomics. Coupled with data scarcity for less established modalities and integration intricacies, these challenges limit our ability to maximize single-cell omics benefits. We introduce scCross, a tool leveraging variational autoencoders, generative adversarial networks, and the mutual nearest neighbors (MNN) technique for modality alignment. By enabling single-cell cross-modal data generation, multi-omics data simulation, and in silico cellular perturbations, scCross enhances the utility of single-cell multi-omics studies.
Genome BiologyBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
21.00
自引率
3.30%
发文量
241
审稿时长
2 months
期刊介绍:
Genome Biology stands as a premier platform for exceptional research across all domains of biology and biomedicine, explored through a genomic and post-genomic lens.
With an impressive impact factor of 12.3 (2022),* the journal secures its position as the 3rd-ranked research journal in the Genetics and Heredity category and the 2nd-ranked research journal in the Biotechnology and Applied Microbiology category by Thomson Reuters. Notably, Genome Biology holds the distinction of being the highest-ranked open-access journal in this category.
Our dedicated team of highly trained in-house Editors collaborates closely with our esteemed Editorial Board of international experts, ensuring the journal remains on the forefront of scientific advances and community standards. Regular engagement with researchers at conferences and institute visits underscores our commitment to staying abreast of the latest developments in the field.