计算精确测量的磁性约翰逊噪声的实用方法。

ArXiv Pub Date : 2024-09-13
N S Phan, S M Clayton, Y J Kim, T M Ito
{"title":"计算精确测量的磁性约翰逊噪声的实用方法。","authors":"N S Phan, S M Clayton, Y J Kim, T M Ito","doi":"","DOIUrl":null,"url":null,"abstract":"<p><p>Magnetic Johnson noise is an important consideration for many applications involving precision magnetometry, and its significance will only increase in the future with improvements in measurement sensitivity. The fluctuation-dissipation theorem can be utilized to derive analytic expressions for magnetic Johnson noise in certain situations. But when used in conjunction with finite element analysis tools, the combined approach is particularly powerful as it provides a practical means to calculate the magnetic Johnson noise arising from conductors of arbitrary geometry and permeability. In this paper, we demonstrate this method to be one of the most comprehensive approaches presently available to calculate thermal magnetic noise. In particular, its applicability is shown to not be limited to cases where the noise is evaluated at a point in space but also can be expanded to include cases where the magnetic field detector has a more general shape, such as a finite size loop, a gradiometer, or a detector that consists of a polarized atomic species trapped in a volume. Furthermore, some physics insights gained through studies made using this method are discussed.</p>","PeriodicalId":93888,"journal":{"name":"ArXiv","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275706/pdf/","citationCount":"0","resultStr":"{\"title\":\"A practical approach to calculating magnetic Johnson noise for precision measurements.\",\"authors\":\"N S Phan, S M Clayton, Y J Kim, T M Ito\",\"doi\":\"\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Magnetic Johnson noise is an important consideration for many applications involving precision magnetometry, and its significance will only increase in the future with improvements in measurement sensitivity. The fluctuation-dissipation theorem can be utilized to derive analytic expressions for magnetic Johnson noise in certain situations. But when used in conjunction with finite element analysis tools, the combined approach is particularly powerful as it provides a practical means to calculate the magnetic Johnson noise arising from conductors of arbitrary geometry and permeability. In this paper, we demonstrate this method to be one of the most comprehensive approaches presently available to calculate thermal magnetic noise. In particular, its applicability is shown to not be limited to cases where the noise is evaluated at a point in space but also can be expanded to include cases where the magnetic field detector has a more general shape, such as a finite size loop, a gradiometer, or a detector that consists of a polarized atomic species trapped in a volume. Furthermore, some physics insights gained through studies made using this method are discussed.</p>\",\"PeriodicalId\":93888,\"journal\":{\"name\":\"ArXiv\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-09-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11275706/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ArXiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ArXiv","FirstCategoryId":"1085","ListUrlMain":"","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁约翰逊噪声是许多涉及精密磁力测量应用的重要考虑因素,其重要性只会随着测量灵敏度的提高而增加。在某些情况下,可以利用波动消散定理推导出磁约翰逊噪声的解析表达式。但是,当与市面上的有限元分析工具结合使用时,这种组合方法就显得尤为强大,因为它提供了一种实用的方法来计算任意几何形状和磁导率的导体所产生的磁性约翰逊噪声。在本文中,我们证明这种方法是目前可用来计算热磁噪声的最全面的方法之一。特别是,它的适用性并不局限于在空间某点评估噪声的情况,还可以扩展到包括磁场探测器具有更一般形状的情况,如有限尺寸环、梯度仪或由被困在一个体积中的极化原子物种组成的探测器。此外,还讨论了通过使用这种方法进行研究而获得的一些物理学见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A practical approach to calculating magnetic Johnson noise for precision measurements.

Magnetic Johnson noise is an important consideration for many applications involving precision magnetometry, and its significance will only increase in the future with improvements in measurement sensitivity. The fluctuation-dissipation theorem can be utilized to derive analytic expressions for magnetic Johnson noise in certain situations. But when used in conjunction with finite element analysis tools, the combined approach is particularly powerful as it provides a practical means to calculate the magnetic Johnson noise arising from conductors of arbitrary geometry and permeability. In this paper, we demonstrate this method to be one of the most comprehensive approaches presently available to calculate thermal magnetic noise. In particular, its applicability is shown to not be limited to cases where the noise is evaluated at a point in space but also can be expanded to include cases where the magnetic field detector has a more general shape, such as a finite size loop, a gradiometer, or a detector that consists of a polarized atomic species trapped in a volume. Furthermore, some physics insights gained through studies made using this method are discussed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信