自然种群的基因组学:基因转换事件揭示了假鳞翅目果蝇逆转录中的部分基因。

IF 2.1 3区 生物学 Q3 GENETICS & HEREDITY
Stephen W Schaeffer, Stephen Richards, Zachary L Fuller
{"title":"自然种群的基因组学:基因转换事件揭示了假鳞翅目果蝇逆转录中的部分基因。","authors":"Stephen W Schaeffer, Stephen Richards, Zachary L Fuller","doi":"10.1093/g3journal/jkae176","DOIUrl":null,"url":null,"abstract":"<p><p>When adaptive phenotypic variation or quantitative trait loci map within an inverted segment of a chromosome, researchers often despair because the suppression of crossing over will prevent the discovery of selective target genes that established the rearrangement. If an inversion polymorphism is old enough, then the accumulation of gene conversion tracts offers the promise that quantitative trait loci or selected loci within inversions can be mapped. The inversion polymorphism of Drosophila pseudoobscura is a model system to show that gene conversion analysis is a useful tool for mapping selected loci within inversions. D. pseudoobscura has over 30 different chromosomal arrangements on the third chromosome (Muller C) in natural populations and their frequencies vary with changes in environmental habitats. Statistical tests of five D. pseudoobscura gene arrangements identified outlier genes within inverted regions that had potentially heritable variation, either fixed amino acid differences or differential expression patterns. We use genome sequences of the inverted third chromosome (Muller C) to infer 98,443 gene conversion tracts for a total coverage of 142 Mb or 7.2× coverage of the 19.7 Mb chromosome. We estimated gene conversion tract coverage in the 2,668 genes on Muller C and tested whether gene conversion coverage was similar among arrangements for outlier vs non-outlier loci. Outlier genes had lower gene conversion tract coverage among arrangements than the non-outlier genes suggesting that selection removes exchanged DNA in the outlier genes. These data support the hypothesis that the third chromosome in D. pseudoobscura captured locally adapted combinations of alleles prior to inversion mutation events.</p>","PeriodicalId":12468,"journal":{"name":"G3: Genes|Genomes|Genetics","volume":" ","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457094/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomics of natural populations: gene conversion events reveal selected genes within the inversions of Drosophila pseudoobscura.\",\"authors\":\"Stephen W Schaeffer, Stephen Richards, Zachary L Fuller\",\"doi\":\"10.1093/g3journal/jkae176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>When adaptive phenotypic variation or quantitative trait loci map within an inverted segment of a chromosome, researchers often despair because the suppression of crossing over will prevent the discovery of selective target genes that established the rearrangement. If an inversion polymorphism is old enough, then the accumulation of gene conversion tracts offers the promise that quantitative trait loci or selected loci within inversions can be mapped. The inversion polymorphism of Drosophila pseudoobscura is a model system to show that gene conversion analysis is a useful tool for mapping selected loci within inversions. D. pseudoobscura has over 30 different chromosomal arrangements on the third chromosome (Muller C) in natural populations and their frequencies vary with changes in environmental habitats. Statistical tests of five D. pseudoobscura gene arrangements identified outlier genes within inverted regions that had potentially heritable variation, either fixed amino acid differences or differential expression patterns. We use genome sequences of the inverted third chromosome (Muller C) to infer 98,443 gene conversion tracts for a total coverage of 142 Mb or 7.2× coverage of the 19.7 Mb chromosome. We estimated gene conversion tract coverage in the 2,668 genes on Muller C and tested whether gene conversion coverage was similar among arrangements for outlier vs non-outlier loci. Outlier genes had lower gene conversion tract coverage among arrangements than the non-outlier genes suggesting that selection removes exchanged DNA in the outlier genes. These data support the hypothesis that the third chromosome in D. pseudoobscura captured locally adapted combinations of alleles prior to inversion mutation events.</p>\",\"PeriodicalId\":12468,\"journal\":{\"name\":\"G3: Genes|Genomes|Genetics\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"G3: Genes|Genomes|Genetics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/g3journal/jkae176\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"G3: Genes|Genomes|Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/g3journal/jkae176","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

当适应性表型变异或 QTL 映射在染色体的倒位片段中时,研究人员往往会感到绝望,因为抑制交叉将阻碍发现建立重排的选择性目标基因。如果倒位多态性的历史足够久远,那么基因转换片段的积累就为绘制倒位内的 QTL 或选择基因座提供了希望。假鳞翅目果蝇的反转多态性是一个模型系统,它表明基因转换分析是绘制反转内选定基因座图谱的有用工具。在自然种群中,假鳞翅目果蝇的第三条染色体(Muller C)上有 30 多种不同的染色体排列,其频率随环境生境的变化而变化。对五种 D. pseudoobscura 基因排列的统计测试发现了倒位区域内的离群基因,这些离群基因具有潜在的遗传变异,或者是固定的氨基酸差异,或者是不同的表达模式。我们利用倒置的第三条染色体(Muller C)的基因组序列推断出 98,443 个基因转换区,总覆盖范围为 142 Mb,是 19.7 Mb 染色体覆盖范围的 7.2 倍。我们估算了 Muller C 上 2,668 个基因的基因转换带覆盖率,并测试了离群基因与非离群基因位点排列的基因转换覆盖率是否相似。与非离群基因相比,离群基因在排列间的基因转换片段覆盖率较低,这表明选择清除了离群基因中的交换 DNA。这些数据支持了假梭子蟹第三染色体在发生反转突变事件之前捕获局部适应的等位基因组合的假设。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genomics of natural populations: gene conversion events reveal selected genes within the inversions of Drosophila pseudoobscura.

When adaptive phenotypic variation or quantitative trait loci map within an inverted segment of a chromosome, researchers often despair because the suppression of crossing over will prevent the discovery of selective target genes that established the rearrangement. If an inversion polymorphism is old enough, then the accumulation of gene conversion tracts offers the promise that quantitative trait loci or selected loci within inversions can be mapped. The inversion polymorphism of Drosophila pseudoobscura is a model system to show that gene conversion analysis is a useful tool for mapping selected loci within inversions. D. pseudoobscura has over 30 different chromosomal arrangements on the third chromosome (Muller C) in natural populations and their frequencies vary with changes in environmental habitats. Statistical tests of five D. pseudoobscura gene arrangements identified outlier genes within inverted regions that had potentially heritable variation, either fixed amino acid differences or differential expression patterns. We use genome sequences of the inverted third chromosome (Muller C) to infer 98,443 gene conversion tracts for a total coverage of 142 Mb or 7.2× coverage of the 19.7 Mb chromosome. We estimated gene conversion tract coverage in the 2,668 genes on Muller C and tested whether gene conversion coverage was similar among arrangements for outlier vs non-outlier loci. Outlier genes had lower gene conversion tract coverage among arrangements than the non-outlier genes suggesting that selection removes exchanged DNA in the outlier genes. These data support the hypothesis that the third chromosome in D. pseudoobscura captured locally adapted combinations of alleles prior to inversion mutation events.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
G3: Genes|Genomes|Genetics
G3: Genes|Genomes|Genetics GENETICS & HEREDITY-
CiteScore
5.10
自引率
3.80%
发文量
305
审稿时长
3-8 weeks
期刊介绍: G3: Genes, Genomes, Genetics provides a forum for the publication of high‐quality foundational research, particularly research that generates useful genetic and genomic information such as genome maps, single gene studies, genome‐wide association and QTL studies, as well as genome reports, mutant screens, and advances in methods and technology. The Editorial Board of G3 believes that rapid dissemination of these data is the necessary foundation for analysis that leads to mechanistic insights. G3, published by the Genetics Society of America, meets the critical and growing need of the genetics community for rapid review and publication of important results in all areas of genetics. G3 offers the opportunity to publish the puzzling finding or to present unpublished results that may not have been submitted for review and publication due to a perceived lack of a potential high-impact finding. G3 has earned the DOAJ Seal, which is a mark of certification for open access journals, awarded by DOAJ to journals that achieve a high level of openness, adhere to Best Practice and high publishing standards.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信