Izabela Ryza , Claudia Granata , Nadia Ribeiro , Edyta Nalewajko-Sieliwoniuk , Andreas Kießling , Marta Hryniewicka , Winfried Plass , Beata Godlewska-Żyłkiewicz , Sandra Cabo Verde , Demetrio Milea , Sofia Gama
{"title":"8- 羟基喹啉-2-羧酸的 Ga 复合物:化学成分和生物活性。","authors":"Izabela Ryza , Claudia Granata , Nadia Ribeiro , Edyta Nalewajko-Sieliwoniuk , Andreas Kießling , Marta Hryniewicka , Winfried Plass , Beata Godlewska-Żyłkiewicz , Sandra Cabo Verde , Demetrio Milea , Sofia Gama","doi":"10.1016/j.jinorgbio.2024.112670","DOIUrl":null,"url":null,"abstract":"<div><p>The binding ability of 8-hydroxyquinoline-2-carboxylic acid (8-HQA) towards Ga<sup>3+</sup> has been investigated by ISE<img>H<sup>+</sup> (Ion Selective Electrode, glass electrode) potentiometric and UV/Vis spectrophotometric titrations in KCl<sub>(aq)</sub> at <em>I</em> = 0.2 mol dm<sup>−3</sup> and at <em>T</em> = 298.15 K. Further experiments were also performed adopting both the metal (with Fe<sup>3+</sup> as competing cation) and ligand-competition approaches (with EDTA as competing ligand). Results gave evidence of the formation of the [Ga(8-HQA)]<sup>+</sup>, [Ga(8-HQA)(OH)], [Ga(8-HQA)(OH)<sub>2</sub>]<sup>−</sup> and [Ga(8-HQA)<sub>2</sub>]<sup>−</sup> species, the latter being so far the most stable, as also confirmed by ESI-MS analysis. Experiments were also designed to determine the stability constants of the [Ga(EDTA)]<sup>−</sup> and [Ga(EDTA)(OH)]<sup>2−</sup> in the above conditions. Due to the relevance of Ga<sup>3+</sup> hydrolysis in aqueous systems, literature data on this topic were collected and critically analyzed, providing equations for the calculation of mononuclear Ga<sup>3+</sup> hydrolysis constants at <em>T</em> = 298.15 K, in different ionic media, in the ionic strength range 0 < <em>I</em> / mol dm<sup>−3</sup> ≤ 1.0. The synthesis and characterization (by ElectroSpray Ionization – Mass Spectrometry (ESI-MS), Attenuated Total Reflectance - Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and ThermoGravimetric Analysis (TGA)) of Ga<sup>3+</sup>/8-HQA complexes were also performed, identifying [Ga(8-HQA)<sub>2</sub>]<sup>−</sup> as the main isolated species, even in the solid state. Finally, the potential effects of 8-HQA and Ga<sup>3+</sup>/8-HQA complex towards human microbiota exposed to ionizing radiation were evaluated (namely <em>Actinomyces viscosus</em>, <em>Streptococcus mutans</em>, <em>Streptococcus sobrinus</em>, <em>Pseudomonas putida</em>, <em>Pseudomonas fluorescens</em> and <em>Escherichia coli</em>), as well as their anti-proliferative and anti-inflammatory properties. A radioprotective effect of Ga<sup>3+</sup>/8-HQA complex was observed on <em>Actinomyces viscosus</em>, while showing a potential radiosensitizing effect against <em>Streptococcus mutans</em> and <em>Streptococcus sobrinus</em>. No cytotoxicity on RAW264.7 murine macrophage cells was observed, neither for the free ligand or Ga<sup>3+</sup>/8-HQA complex. Nevertheless, Ga<sup>3+</sup>/8-HQA complex highlighted potential anti-inflammatory properties.</p></div>","PeriodicalId":364,"journal":{"name":"Journal of Inorganic Biochemistry","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0162013424001946/pdfft?md5=8071b26e3edf40d588f6eeed3f706ad6&pid=1-s2.0-S0162013424001946-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Ga complexes of 8-hydroxyquinoline-2-carboxylic acid: Chemical speciation and biological activity\",\"authors\":\"Izabela Ryza , Claudia Granata , Nadia Ribeiro , Edyta Nalewajko-Sieliwoniuk , Andreas Kießling , Marta Hryniewicka , Winfried Plass , Beata Godlewska-Żyłkiewicz , Sandra Cabo Verde , Demetrio Milea , Sofia Gama\",\"doi\":\"10.1016/j.jinorgbio.2024.112670\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The binding ability of 8-hydroxyquinoline-2-carboxylic acid (8-HQA) towards Ga<sup>3+</sup> has been investigated by ISE<img>H<sup>+</sup> (Ion Selective Electrode, glass electrode) potentiometric and UV/Vis spectrophotometric titrations in KCl<sub>(aq)</sub> at <em>I</em> = 0.2 mol dm<sup>−3</sup> and at <em>T</em> = 298.15 K. Further experiments were also performed adopting both the metal (with Fe<sup>3+</sup> as competing cation) and ligand-competition approaches (with EDTA as competing ligand). Results gave evidence of the formation of the [Ga(8-HQA)]<sup>+</sup>, [Ga(8-HQA)(OH)], [Ga(8-HQA)(OH)<sub>2</sub>]<sup>−</sup> and [Ga(8-HQA)<sub>2</sub>]<sup>−</sup> species, the latter being so far the most stable, as also confirmed by ESI-MS analysis. Experiments were also designed to determine the stability constants of the [Ga(EDTA)]<sup>−</sup> and [Ga(EDTA)(OH)]<sup>2−</sup> in the above conditions. Due to the relevance of Ga<sup>3+</sup> hydrolysis in aqueous systems, literature data on this topic were collected and critically analyzed, providing equations for the calculation of mononuclear Ga<sup>3+</sup> hydrolysis constants at <em>T</em> = 298.15 K, in different ionic media, in the ionic strength range 0 < <em>I</em> / mol dm<sup>−3</sup> ≤ 1.0. The synthesis and characterization (by ElectroSpray Ionization – Mass Spectrometry (ESI-MS), Attenuated Total Reflectance - Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and ThermoGravimetric Analysis (TGA)) of Ga<sup>3+</sup>/8-HQA complexes were also performed, identifying [Ga(8-HQA)<sub>2</sub>]<sup>−</sup> as the main isolated species, even in the solid state. Finally, the potential effects of 8-HQA and Ga<sup>3+</sup>/8-HQA complex towards human microbiota exposed to ionizing radiation were evaluated (namely <em>Actinomyces viscosus</em>, <em>Streptococcus mutans</em>, <em>Streptococcus sobrinus</em>, <em>Pseudomonas putida</em>, <em>Pseudomonas fluorescens</em> and <em>Escherichia coli</em>), as well as their anti-proliferative and anti-inflammatory properties. A radioprotective effect of Ga<sup>3+</sup>/8-HQA complex was observed on <em>Actinomyces viscosus</em>, while showing a potential radiosensitizing effect against <em>Streptococcus mutans</em> and <em>Streptococcus sobrinus</em>. No cytotoxicity on RAW264.7 murine macrophage cells was observed, neither for the free ligand or Ga<sup>3+</sup>/8-HQA complex. Nevertheless, Ga<sup>3+</sup>/8-HQA complex highlighted potential anti-inflammatory properties.</p></div>\",\"PeriodicalId\":364,\"journal\":{\"name\":\"Journal of Inorganic Biochemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0162013424001946/pdfft?md5=8071b26e3edf40d588f6eeed3f706ad6&pid=1-s2.0-S0162013424001946-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Inorganic Biochemistry\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0162013424001946\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Inorganic Biochemistry","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0162013424001946","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Ga complexes of 8-hydroxyquinoline-2-carboxylic acid: Chemical speciation and biological activity
The binding ability of 8-hydroxyquinoline-2-carboxylic acid (8-HQA) towards Ga3+ has been investigated by ISEH+ (Ion Selective Electrode, glass electrode) potentiometric and UV/Vis spectrophotometric titrations in KCl(aq) at I = 0.2 mol dm−3 and at T = 298.15 K. Further experiments were also performed adopting both the metal (with Fe3+ as competing cation) and ligand-competition approaches (with EDTA as competing ligand). Results gave evidence of the formation of the [Ga(8-HQA)]+, [Ga(8-HQA)(OH)], [Ga(8-HQA)(OH)2]− and [Ga(8-HQA)2]− species, the latter being so far the most stable, as also confirmed by ESI-MS analysis. Experiments were also designed to determine the stability constants of the [Ga(EDTA)]− and [Ga(EDTA)(OH)]2− in the above conditions. Due to the relevance of Ga3+ hydrolysis in aqueous systems, literature data on this topic were collected and critically analyzed, providing equations for the calculation of mononuclear Ga3+ hydrolysis constants at T = 298.15 K, in different ionic media, in the ionic strength range 0 < I / mol dm−3 ≤ 1.0. The synthesis and characterization (by ElectroSpray Ionization – Mass Spectrometry (ESI-MS), Attenuated Total Reflectance - Fourier-Transform Infrared Spectroscopy (ATR-FTIR) and ThermoGravimetric Analysis (TGA)) of Ga3+/8-HQA complexes were also performed, identifying [Ga(8-HQA)2]− as the main isolated species, even in the solid state. Finally, the potential effects of 8-HQA and Ga3+/8-HQA complex towards human microbiota exposed to ionizing radiation were evaluated (namely Actinomyces viscosus, Streptococcus mutans, Streptococcus sobrinus, Pseudomonas putida, Pseudomonas fluorescens and Escherichia coli), as well as their anti-proliferative and anti-inflammatory properties. A radioprotective effect of Ga3+/8-HQA complex was observed on Actinomyces viscosus, while showing a potential radiosensitizing effect against Streptococcus mutans and Streptococcus sobrinus. No cytotoxicity on RAW264.7 murine macrophage cells was observed, neither for the free ligand or Ga3+/8-HQA complex. Nevertheless, Ga3+/8-HQA complex highlighted potential anti-inflammatory properties.
期刊介绍:
The Journal of Inorganic Biochemistry is an established international forum for research in all aspects of Biological Inorganic Chemistry. Original papers of a high scientific level are published in the form of Articles (full length papers), Short Communications, Focused Reviews and Bioinorganic Methods. Topics include: the chemistry, structure and function of metalloenzymes; the interaction of inorganic ions and molecules with proteins and nucleic acids; the synthesis and properties of coordination complexes of biological interest including both structural and functional model systems; the function of metal- containing systems in the regulation of gene expression; the role of metals in medicine; the application of spectroscopic methods to determine the structure of metallobiomolecules; the preparation and characterization of metal-based biomaterials; and related systems. The emphasis of the Journal is on the structure and mechanism of action of metallobiomolecules.