{"title":"TDP-43 通过直接分子相互作用延迟纤维成熟,从而促进淀粉样蛋白-β的毒性。","authors":"Adam J Gatch, Feng Ding","doi":"10.1021/acschemneuro.4c00334","DOIUrl":null,"url":null,"abstract":"<p><p>Amyloid-β (Aβ) is a peptide that undergoes self-assembly into amyloid fibrils, which compose the hallmark plaques observed in Alzheimer's disease (AD). TAR DNA-binding protein 43 (TDP-43) is a protein with mislocalization and aggregation implicated in amyotrophic lateral sclerosis and other neurodegenerative diseases. Recent work suggests that TDP-43 may interact with Aβ, inhibiting the formation of amyloid fibrils and worsening AD pathology, but the molecular details of their interaction remain unknown. Using all-atom discrete molecular dynamics simulations, we systematically investigated the direct molecular interaction between Aβ and TDP-43. We found that Aβ monomers were able to bind near the flexible nuclear localization sequence of the N-terminal domain (NTD) of TDP-43, adopting β-sheet rich conformations that were promoted by the interaction. Furthermore, Aβ associated with the nucleic acid binding interface of the tandem RNA recognition motifs of TDP-43 via electrostatic interactions. Using the computational peptide array method, we found the strongest C-terminal domain interaction with Aβ to be within the amyloidogenic core region of TDP-43. With experimental evidence suggesting that the NTD is necessary for inhibiting Aβ fibril growth, we also simulated the NTD with an Aβ40 fibril seed. We found that the NTD was able to strongly bind the elongation surface of the fibril seed via extensive hydrogen bonding and could also diffuse along the lateral surface via electrostatic interactions. Our results suggest that TDP-43 binding to the elongation surface, thereby sterically blocking Aβ monomer addition, is responsible for the experimentally observed inhibition of fibril growth. We conclude that TDP-43 may promote Aβ toxicity by stabilizing the oligomeric state and kinetically delaying fibril maturation.</p>","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":" ","pages":"2936-2953"},"PeriodicalIF":4.1000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323227/pdf/","citationCount":"0","resultStr":"{\"title\":\"TDP-43 Promotes Amyloid-Beta Toxicity by Delaying Fibril Maturation via Direct Molecular Interaction.\",\"authors\":\"Adam J Gatch, Feng Ding\",\"doi\":\"10.1021/acschemneuro.4c00334\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Amyloid-β (Aβ) is a peptide that undergoes self-assembly into amyloid fibrils, which compose the hallmark plaques observed in Alzheimer's disease (AD). TAR DNA-binding protein 43 (TDP-43) is a protein with mislocalization and aggregation implicated in amyotrophic lateral sclerosis and other neurodegenerative diseases. Recent work suggests that TDP-43 may interact with Aβ, inhibiting the formation of amyloid fibrils and worsening AD pathology, but the molecular details of their interaction remain unknown. Using all-atom discrete molecular dynamics simulations, we systematically investigated the direct molecular interaction between Aβ and TDP-43. We found that Aβ monomers were able to bind near the flexible nuclear localization sequence of the N-terminal domain (NTD) of TDP-43, adopting β-sheet rich conformations that were promoted by the interaction. Furthermore, Aβ associated with the nucleic acid binding interface of the tandem RNA recognition motifs of TDP-43 via electrostatic interactions. Using the computational peptide array method, we found the strongest C-terminal domain interaction with Aβ to be within the amyloidogenic core region of TDP-43. With experimental evidence suggesting that the NTD is necessary for inhibiting Aβ fibril growth, we also simulated the NTD with an Aβ40 fibril seed. We found that the NTD was able to strongly bind the elongation surface of the fibril seed via extensive hydrogen bonding and could also diffuse along the lateral surface via electrostatic interactions. Our results suggest that TDP-43 binding to the elongation surface, thereby sterically blocking Aβ monomer addition, is responsible for the experimentally observed inhibition of fibril growth. We conclude that TDP-43 may promote Aβ toxicity by stabilizing the oligomeric state and kinetically delaying fibril maturation.</p>\",\"PeriodicalId\":13,\"journal\":{\"name\":\"ACS Chemical Neuroscience\",\"volume\":\" \",\"pages\":\"2936-2953\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323227/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Chemical Neuroscience\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1021/acschemneuro.4c00334\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/7/29 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00334","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/7/29 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
TDP-43 Promotes Amyloid-Beta Toxicity by Delaying Fibril Maturation via Direct Molecular Interaction.
Amyloid-β (Aβ) is a peptide that undergoes self-assembly into amyloid fibrils, which compose the hallmark plaques observed in Alzheimer's disease (AD). TAR DNA-binding protein 43 (TDP-43) is a protein with mislocalization and aggregation implicated in amyotrophic lateral sclerosis and other neurodegenerative diseases. Recent work suggests that TDP-43 may interact with Aβ, inhibiting the formation of amyloid fibrils and worsening AD pathology, but the molecular details of their interaction remain unknown. Using all-atom discrete molecular dynamics simulations, we systematically investigated the direct molecular interaction between Aβ and TDP-43. We found that Aβ monomers were able to bind near the flexible nuclear localization sequence of the N-terminal domain (NTD) of TDP-43, adopting β-sheet rich conformations that were promoted by the interaction. Furthermore, Aβ associated with the nucleic acid binding interface of the tandem RNA recognition motifs of TDP-43 via electrostatic interactions. Using the computational peptide array method, we found the strongest C-terminal domain interaction with Aβ to be within the amyloidogenic core region of TDP-43. With experimental evidence suggesting that the NTD is necessary for inhibiting Aβ fibril growth, we also simulated the NTD with an Aβ40 fibril seed. We found that the NTD was able to strongly bind the elongation surface of the fibril seed via extensive hydrogen bonding and could also diffuse along the lateral surface via electrostatic interactions. Our results suggest that TDP-43 binding to the elongation surface, thereby sterically blocking Aβ monomer addition, is responsible for the experimentally observed inhibition of fibril growth. We conclude that TDP-43 may promote Aβ toxicity by stabilizing the oligomeric state and kinetically delaying fibril maturation.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research