扰动后移的不变子空间

Soma Das, Jaydeb Sarkar
{"title":"扰动后移的不变子空间","authors":"Soma Das, Jaydeb Sarkar","doi":"arxiv-2407.17352","DOIUrl":null,"url":null,"abstract":"We represent closed subspaces of the Hardy space that are invariant under\nfinite-rank perturbations of the backward shift. We apply this to classify\nalmost invariant subspaces of the backward shift and represent closed subspaces\nthat are invariant under a more refined version of nearly invariant subspaces\nof the backward shift. Kernels of certain perturbed Toeplitz operators are\nexamples of the newly introduced nearly invariant subspaces.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant subspaces of perturbed backward shift\",\"authors\":\"Soma Das, Jaydeb Sarkar\",\"doi\":\"arxiv-2407.17352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We represent closed subspaces of the Hardy space that are invariant under\\nfinite-rank perturbations of the backward shift. We apply this to classify\\nalmost invariant subspaces of the backward shift and represent closed subspaces\\nthat are invariant under a more refined version of nearly invariant subspaces\\nof the backward shift. Kernels of certain perturbed Toeplitz operators are\\nexamples of the newly introduced nearly invariant subspaces.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们表示哈代空间的封闭子空间,这些子空间在后向平移的无限阶扰动下是不变的。我们将其应用于后移几乎不变子空间的分类,并表示在后移几乎不变子空间的更精细版本下不变的封闭子空间。某些扰动托普利兹算子的核就是新引入的近不变子空间的例子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Invariant subspaces of perturbed backward shift
We represent closed subspaces of the Hardy space that are invariant under finite-rank perturbations of the backward shift. We apply this to classify almost invariant subspaces of the backward shift and represent closed subspaces that are invariant under a more refined version of nearly invariant subspaces of the backward shift. Kernels of certain perturbed Toeplitz operators are examples of the newly introduced nearly invariant subspaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信