{"title":"扰动后移的不变子空间","authors":"Soma Das, Jaydeb Sarkar","doi":"arxiv-2407.17352","DOIUrl":null,"url":null,"abstract":"We represent closed subspaces of the Hardy space that are invariant under\nfinite-rank perturbations of the backward shift. We apply this to classify\nalmost invariant subspaces of the backward shift and represent closed subspaces\nthat are invariant under a more refined version of nearly invariant subspaces\nof the backward shift. Kernels of certain perturbed Toeplitz operators are\nexamples of the newly introduced nearly invariant subspaces.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Invariant subspaces of perturbed backward shift\",\"authors\":\"Soma Das, Jaydeb Sarkar\",\"doi\":\"arxiv-2407.17352\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We represent closed subspaces of the Hardy space that are invariant under\\nfinite-rank perturbations of the backward shift. We apply this to classify\\nalmost invariant subspaces of the backward shift and represent closed subspaces\\nthat are invariant under a more refined version of nearly invariant subspaces\\nof the backward shift. Kernels of certain perturbed Toeplitz operators are\\nexamples of the newly introduced nearly invariant subspaces.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.17352\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.17352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We represent closed subspaces of the Hardy space that are invariant under
finite-rank perturbations of the backward shift. We apply this to classify
almost invariant subspaces of the backward shift and represent closed subspaces
that are invariant under a more refined version of nearly invariant subspaces
of the backward shift. Kernels of certain perturbed Toeplitz operators are
examples of the newly introduced nearly invariant subspaces.