Zhaowen Deng, Youqun Zhao, Wei Gao, Qiang Yi, Baohua Wang
{"title":"用于高速行驶车辆的主动空气动力学和主动后轮转向综合稳定控制系统","authors":"Zhaowen Deng, Youqun Zhao, Wei Gao, Qiang Yi, Baohua Wang","doi":"10.1177/09544070241264850","DOIUrl":null,"url":null,"abstract":"At present, the research on improving vehicle handling stability, ride comfort, and driving safety mainly focuses on chassis system control, and rarely considers vehicle active aerodynamic control based on aerodynamic characteristics. Therefore, this paper takes the high-speed vehicle with adjustable tail as the research object, and the integrated stability control of active aerodynamics and active rear-wheel steering has been proposed. First, a linear two-degree-of-freedom (2-DOF) vehicle dynamic reference model was established, and the linear quadratic regulator (LQR) active rear-wheel steering controller was designed. Second, the principle of angle of attack distribution for active aerodynamic system was developed, an active aerodynamic Sliding Mode control (SMC) system was designed, which can automatically adjust the angle of attack of the rear wing, according to the vehicle status. Finally, the integrated stability control of active aerodynamics and active rear-wheel steering was realized. In the CarSim and Matlab/Simulink environment, the response characteristics of the integrated control to vehicle handling stability and safety were analyzed. The results show that the integrated stability control can effectively enhance the handling stability, ride comfort, safety, and road tracking ability of the high-speed vehicle, thus reducing the occurrence of vehicle runaway, rollover, and other dangerous situations.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrated stability control of active aerodynamics and active rear-wheel steering for high-speed vehicle\",\"authors\":\"Zhaowen Deng, Youqun Zhao, Wei Gao, Qiang Yi, Baohua Wang\",\"doi\":\"10.1177/09544070241264850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"At present, the research on improving vehicle handling stability, ride comfort, and driving safety mainly focuses on chassis system control, and rarely considers vehicle active aerodynamic control based on aerodynamic characteristics. Therefore, this paper takes the high-speed vehicle with adjustable tail as the research object, and the integrated stability control of active aerodynamics and active rear-wheel steering has been proposed. First, a linear two-degree-of-freedom (2-DOF) vehicle dynamic reference model was established, and the linear quadratic regulator (LQR) active rear-wheel steering controller was designed. Second, the principle of angle of attack distribution for active aerodynamic system was developed, an active aerodynamic Sliding Mode control (SMC) system was designed, which can automatically adjust the angle of attack of the rear wing, according to the vehicle status. Finally, the integrated stability control of active aerodynamics and active rear-wheel steering was realized. In the CarSim and Matlab/Simulink environment, the response characteristics of the integrated control to vehicle handling stability and safety were analyzed. The results show that the integrated stability control can effectively enhance the handling stability, ride comfort, safety, and road tracking ability of the high-speed vehicle, thus reducing the occurrence of vehicle runaway, rollover, and other dangerous situations.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241264850\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241264850","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Integrated stability control of active aerodynamics and active rear-wheel steering for high-speed vehicle
At present, the research on improving vehicle handling stability, ride comfort, and driving safety mainly focuses on chassis system control, and rarely considers vehicle active aerodynamic control based on aerodynamic characteristics. Therefore, this paper takes the high-speed vehicle with adjustable tail as the research object, and the integrated stability control of active aerodynamics and active rear-wheel steering has been proposed. First, a linear two-degree-of-freedom (2-DOF) vehicle dynamic reference model was established, and the linear quadratic regulator (LQR) active rear-wheel steering controller was designed. Second, the principle of angle of attack distribution for active aerodynamic system was developed, an active aerodynamic Sliding Mode control (SMC) system was designed, which can automatically adjust the angle of attack of the rear wing, according to the vehicle status. Finally, the integrated stability control of active aerodynamics and active rear-wheel steering was realized. In the CarSim and Matlab/Simulink environment, the response characteristics of the integrated control to vehicle handling stability and safety were analyzed. The results show that the integrated stability control can effectively enhance the handling stability, ride comfort, safety, and road tracking ability of the high-speed vehicle, thus reducing the occurrence of vehicle runaway, rollover, and other dangerous situations.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.