Ji Youn Lim, Alyssa Fiore, Bruce Le, Corinne Minzer, Halle White, Krystle Burinski, Humaira Janwari, David Wright, Sasha Perebikovsky, Ralph Davis, David Okrongly, Aravind Srinivasan
{"title":"针对 SARS-CoV-2 的新型无细胞直接中和测定的开发与验证","authors":"Ji Youn Lim, Alyssa Fiore, Bruce Le, Corinne Minzer, Halle White, Krystle Burinski, Humaira Janwari, David Wright, Sasha Perebikovsky, Ralph Davis, David Okrongly, Aravind Srinivasan","doi":"10.1101/2024.07.24.24310905","DOIUrl":null,"url":null,"abstract":"Neutralizing antibody titer elicited through infection or vaccination is accepted as a reliable surrogate for protection from SARS-CoV-2 infection, hospitalization, and mortality. The gold standard for measuring neutralizing antibody levels relies on culturing live virus in the presence of a target cell and quantitating the level where 50% of the target cells are infected. These assays have numerous technical challenges, not the least is the requirement for a BSL-3 laboratory to perform the live virus testing. We developed the Q-NAb IgG Test for the quantitative determination of neutralizing antibodies against SARS-CoV-2 variants, traceable to WHO International Standards. The test utilizes a novel Fusion Protein that mimics the Spike receptor binding domain docked to the human ACE2 protein and effectively blocks non-neutralizing antibodies in the sample. After pre-blocking sequesters the non-neutralizing antibodies from the samples, direct binding of the residual neutralizing antibodies to variant RBDs coated in the wells of the microtiter plate is measured with a fluorescent secondary antibody. Results of the Q-NAb IgG Test agree with a live virus Microneutralization Assay for both the Ancestral strain (WA1-2020) and the Omicron BA.5 (COR-22-063113/2022) variant (Spearmans correlation, ρ = 0.87 and 0.92, respectively). The analytical performance (LoB, LoD, LoQ, linearity, precision, and interference) of the Q-NAb IgG Test was established along with sensitivity and specificity using a panel of monoclonal neutralizing and non-neutralizing anti-SARS-CoV-2 antibodies. Clinical sensitivity and specificity using pre-pandemic, convalescent, and vaccinated serum and plasma samples is also reported. The advantages of the Q-NAb IgG Test are its strong correlation to live virus neutralization tests, traceability to WHO International Standards, convenient microtiter plate format, low sample volume requirements, and suitability for a BSL-2 laboratory.","PeriodicalId":501509,"journal":{"name":"medRxiv - Infectious Diseases","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development and Validation of Novel Cell-free Direct Neutralization Assay for SARS-CoV-2\",\"authors\":\"Ji Youn Lim, Alyssa Fiore, Bruce Le, Corinne Minzer, Halle White, Krystle Burinski, Humaira Janwari, David Wright, Sasha Perebikovsky, Ralph Davis, David Okrongly, Aravind Srinivasan\",\"doi\":\"10.1101/2024.07.24.24310905\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neutralizing antibody titer elicited through infection or vaccination is accepted as a reliable surrogate for protection from SARS-CoV-2 infection, hospitalization, and mortality. The gold standard for measuring neutralizing antibody levels relies on culturing live virus in the presence of a target cell and quantitating the level where 50% of the target cells are infected. These assays have numerous technical challenges, not the least is the requirement for a BSL-3 laboratory to perform the live virus testing. We developed the Q-NAb IgG Test for the quantitative determination of neutralizing antibodies against SARS-CoV-2 variants, traceable to WHO International Standards. The test utilizes a novel Fusion Protein that mimics the Spike receptor binding domain docked to the human ACE2 protein and effectively blocks non-neutralizing antibodies in the sample. After pre-blocking sequesters the non-neutralizing antibodies from the samples, direct binding of the residual neutralizing antibodies to variant RBDs coated in the wells of the microtiter plate is measured with a fluorescent secondary antibody. Results of the Q-NAb IgG Test agree with a live virus Microneutralization Assay for both the Ancestral strain (WA1-2020) and the Omicron BA.5 (COR-22-063113/2022) variant (Spearmans correlation, ρ = 0.87 and 0.92, respectively). The analytical performance (LoB, LoD, LoQ, linearity, precision, and interference) of the Q-NAb IgG Test was established along with sensitivity and specificity using a panel of monoclonal neutralizing and non-neutralizing anti-SARS-CoV-2 antibodies. Clinical sensitivity and specificity using pre-pandemic, convalescent, and vaccinated serum and plasma samples is also reported. The advantages of the Q-NAb IgG Test are its strong correlation to live virus neutralization tests, traceability to WHO International Standards, convenient microtiter plate format, low sample volume requirements, and suitability for a BSL-2 laboratory.\",\"PeriodicalId\":501509,\"journal\":{\"name\":\"medRxiv - Infectious Diseases\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv - Infectious Diseases\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.07.24.24310905\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Infectious Diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.07.24.24310905","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Development and Validation of Novel Cell-free Direct Neutralization Assay for SARS-CoV-2
Neutralizing antibody titer elicited through infection or vaccination is accepted as a reliable surrogate for protection from SARS-CoV-2 infection, hospitalization, and mortality. The gold standard for measuring neutralizing antibody levels relies on culturing live virus in the presence of a target cell and quantitating the level where 50% of the target cells are infected. These assays have numerous technical challenges, not the least is the requirement for a BSL-3 laboratory to perform the live virus testing. We developed the Q-NAb IgG Test for the quantitative determination of neutralizing antibodies against SARS-CoV-2 variants, traceable to WHO International Standards. The test utilizes a novel Fusion Protein that mimics the Spike receptor binding domain docked to the human ACE2 protein and effectively blocks non-neutralizing antibodies in the sample. After pre-blocking sequesters the non-neutralizing antibodies from the samples, direct binding of the residual neutralizing antibodies to variant RBDs coated in the wells of the microtiter plate is measured with a fluorescent secondary antibody. Results of the Q-NAb IgG Test agree with a live virus Microneutralization Assay for both the Ancestral strain (WA1-2020) and the Omicron BA.5 (COR-22-063113/2022) variant (Spearmans correlation, ρ = 0.87 and 0.92, respectively). The analytical performance (LoB, LoD, LoQ, linearity, precision, and interference) of the Q-NAb IgG Test was established along with sensitivity and specificity using a panel of monoclonal neutralizing and non-neutralizing anti-SARS-CoV-2 antibodies. Clinical sensitivity and specificity using pre-pandemic, convalescent, and vaccinated serum and plasma samples is also reported. The advantages of the Q-NAb IgG Test are its strong correlation to live virus neutralization tests, traceability to WHO International Standards, convenient microtiter plate format, low sample volume requirements, and suitability for a BSL-2 laboratory.