Sami Baraket, Anis Ben Ghorbal, Giovany M. Figueiredo
{"title":"一类具有对流项和临界指数增长的奇异椭圆问题正解的存在性","authors":"Sami Baraket, Anis Ben Ghorbal, Giovany M. Figueiredo","doi":"10.1186/s13661-024-01897-5","DOIUrl":null,"url":null,"abstract":"This paper uses the Galerkin method to investigate the existence of positive solution to a class of singular elliptic problems given by $$\\begin{aligned} \\textstyle\\begin{cases} -\\Delta u= \\displaystyle \\frac {\\lambda _{0}}{u^{\\beta _{0}}} + \\Lambda _{0} |\\nabla u|^{\\gamma _{0}}+ \\frac{f_{0}(u)}{|x|^{\\alpha _{0}}}+ h_{0}(x), \\ \\ u>0 \\ \\ \\text{in} \\ \\Omega , \\\\ u=0 \\ \\text{on} \\ \\ \\partial \\Omega , \\end{cases}\\displaystyle \\end{aligned}$$ where $\\Omega \\subset \\mathbb{R}^{2}$ is a bounded smooth domain, $0<\\beta _{0}$ , $\\gamma _{0} \\leq 1$ , $\\alpha _{0} \\in [0,2)$ , $h_{0}(x)\\geq 0$ , $h_{0}\\neq 0$ , $h_{0}\\in L^{\\infty}(\\Omega )$ , $0<\\|h_{0}\\|_{\\infty} < \\lambda _{0} < \\Lambda _{0}$ , and $f_{0}$ are continuous functions. More precisely, $f_{0}$ has a critical exponential growth, that is, the nonlinearity behaves like $\\exp (\\overline{\\Upsilon}s^{2})$ as $|s| \\to \\infty $ , for some $\\overline{\\Upsilon}>0$ .","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"108 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of positive solutions for a class of singular elliptic problems with convection term and critical exponential growth\",\"authors\":\"Sami Baraket, Anis Ben Ghorbal, Giovany M. Figueiredo\",\"doi\":\"10.1186/s13661-024-01897-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper uses the Galerkin method to investigate the existence of positive solution to a class of singular elliptic problems given by $$\\\\begin{aligned} \\\\textstyle\\\\begin{cases} -\\\\Delta u= \\\\displaystyle \\\\frac {\\\\lambda _{0}}{u^{\\\\beta _{0}}} + \\\\Lambda _{0} |\\\\nabla u|^{\\\\gamma _{0}}+ \\\\frac{f_{0}(u)}{|x|^{\\\\alpha _{0}}}+ h_{0}(x), \\\\ \\\\ u>0 \\\\ \\\\ \\\\text{in} \\\\ \\\\Omega , \\\\\\\\ u=0 \\\\ \\\\text{on} \\\\ \\\\ \\\\partial \\\\Omega , \\\\end{cases}\\\\displaystyle \\\\end{aligned}$$ where $\\\\Omega \\\\subset \\\\mathbb{R}^{2}$ is a bounded smooth domain, $0<\\\\beta _{0}$ , $\\\\gamma _{0} \\\\leq 1$ , $\\\\alpha _{0} \\\\in [0,2)$ , $h_{0}(x)\\\\geq 0$ , $h_{0}\\\\neq 0$ , $h_{0}\\\\in L^{\\\\infty}(\\\\Omega )$ , $0<\\\\|h_{0}\\\\|_{\\\\infty} < \\\\lambda _{0} < \\\\Lambda _{0}$ , and $f_{0}$ are continuous functions. More precisely, $f_{0}$ has a critical exponential growth, that is, the nonlinearity behaves like $\\\\exp (\\\\overline{\\\\Upsilon}s^{2})$ as $|s| \\\\to \\\\infty $ , for some $\\\\overline{\\\\Upsilon}>0$ .\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"108 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01897-5\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01897-5","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
Existence of positive solutions for a class of singular elliptic problems with convection term and critical exponential growth
This paper uses the Galerkin method to investigate the existence of positive solution to a class of singular elliptic problems given by $$\begin{aligned} \textstyle\begin{cases} -\Delta u= \displaystyle \frac {\lambda _{0}}{u^{\beta _{0}}} + \Lambda _{0} |\nabla u|^{\gamma _{0}}+ \frac{f_{0}(u)}{|x|^{\alpha _{0}}}+ h_{0}(x), \ \ u>0 \ \ \text{in} \ \Omega , \\ u=0 \ \text{on} \ \ \partial \Omega , \end{cases}\displaystyle \end{aligned}$$ where $\Omega \subset \mathbb{R}^{2}$ is a bounded smooth domain, $0<\beta _{0}$ , $\gamma _{0} \leq 1$ , $\alpha _{0} \in [0,2)$ , $h_{0}(x)\geq 0$ , $h_{0}\neq 0$ , $h_{0}\in L^{\infty}(\Omega )$ , $0<\|h_{0}\|_{\infty} < \lambda _{0} < \Lambda _{0}$ , and $f_{0}$ are continuous functions. More precisely, $f_{0}$ has a critical exponential growth, that is, the nonlinearity behaves like $\exp (\overline{\Upsilon}s^{2})$ as $|s| \to \infty $ , for some $\overline{\Upsilon}>0$ .
期刊介绍:
The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.