耦合顺序ψ-希尔费分数脉冲 BVPs 的存在结果:拓扑度理论方法

IF 1.7 4区 数学 Q1 Mathematics
M. Latha Maheswari, K. S. Keerthana Shri, Karthik Muthusamy
{"title":"耦合顺序ψ-希尔费分数脉冲 BVPs 的存在结果:拓扑度理论方法","authors":"M. Latha Maheswari, K. S. Keerthana Shri, Karthik Muthusamy","doi":"10.1186/s13661-024-01901-y","DOIUrl":null,"url":null,"abstract":"In this paper, the coupled system of sequential ψ-Hilfer fractional boundary value problems with non-instantaneous impulses is investigated. The existence results of the system are proved by means of topological degree theory. An example is constructed to demonstrate our results. Additionally, a graphical analysis is performed to verify our results.","PeriodicalId":49228,"journal":{"name":"Boundary Value Problems","volume":"140 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence results for coupled sequential ψ-Hilfer fractional impulsive BVPs: topological degree theory approach\",\"authors\":\"M. Latha Maheswari, K. S. Keerthana Shri, Karthik Muthusamy\",\"doi\":\"10.1186/s13661-024-01901-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the coupled system of sequential ψ-Hilfer fractional boundary value problems with non-instantaneous impulses is investigated. The existence results of the system are proved by means of topological degree theory. An example is constructed to demonstrate our results. Additionally, a graphical analysis is performed to verify our results.\",\"PeriodicalId\":49228,\"journal\":{\"name\":\"Boundary Value Problems\",\"volume\":\"140 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Boundary Value Problems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1186/s13661-024-01901-y\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Boundary Value Problems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1186/s13661-024-01901-y","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了具有非瞬时脉冲的顺序ψ-Hilfer 分数边界值问题耦合系统。通过拓扑度理论证明了系统的存在性结果。为了证明我们的结果,我们构建了一个实例。此外,还进行了图形分析以验证我们的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence results for coupled sequential ψ-Hilfer fractional impulsive BVPs: topological degree theory approach
In this paper, the coupled system of sequential ψ-Hilfer fractional boundary value problems with non-instantaneous impulses is investigated. The existence results of the system are proved by means of topological degree theory. An example is constructed to demonstrate our results. Additionally, a graphical analysis is performed to verify our results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Boundary Value Problems
Boundary Value Problems MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
3.00
自引率
5.90%
发文量
83
审稿时长
4 months
期刊介绍: The main aim of Boundary Value Problems is to provide a forum to promote, encourage, and bring together various disciplines which use the theory, methods, and applications of boundary value problems. Boundary Value Problems will publish very high quality research articles on boundary value problems for ordinary, functional, difference, elliptic, parabolic, and hyperbolic differential equations. Articles on singular, free, and ill-posed boundary value problems, and other areas of abstract and concrete analysis are welcome. In addition to regular research articles, Boundary Value Problems will publish review articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信