{"title":"Deaconu-Renault 群的 C* 代数的可嵌入性 AF","authors":"Rafael Pereira Lima","doi":"arxiv-2407.16510","DOIUrl":null,"url":null,"abstract":"We study Deaconu-Renault groupoids corresponding to surjective local\nhomeomorphisms on locally compact, Hausdorff, second countable, totally\ndisconnected spaces, and we characterise when the C*-algebras of these\ngroupoids are AF embeddable. Our main result generalises theorems in the\nliterature for graphs and for crossed products of commutative C*-algebras by\nthe integers. We give a condition on the surjective local homeomorphism that\ncharacterises the AF embeddability of the C*-algebra of the associated\nDeaconu-Renault groupoid. In order to prove our main result, we analyse\nhomology groups for AF groupoids, and we prove a theorem that gives an explicit\nformula for the isomorphism of these groups and the corresponding K-theory.\nThis isomorphism generalises Farsi, Kumjian, Pask, Sims (M\\\"unster J. Math,\n2019) and Matui (Proc. Lond. Math. Soc, 2012), since we give an explicit\nformula for the isomorphism and we show that it preserves positive elements.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AF Embeddability of the C*-Algebra of a Deaconu-Renault Groupoid\",\"authors\":\"Rafael Pereira Lima\",\"doi\":\"arxiv-2407.16510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study Deaconu-Renault groupoids corresponding to surjective local\\nhomeomorphisms on locally compact, Hausdorff, second countable, totally\\ndisconnected spaces, and we characterise when the C*-algebras of these\\ngroupoids are AF embeddable. Our main result generalises theorems in the\\nliterature for graphs and for crossed products of commutative C*-algebras by\\nthe integers. We give a condition on the surjective local homeomorphism that\\ncharacterises the AF embeddability of the C*-algebra of the associated\\nDeaconu-Renault groupoid. In order to prove our main result, we analyse\\nhomology groups for AF groupoids, and we prove a theorem that gives an explicit\\nformula for the isomorphism of these groups and the corresponding K-theory.\\nThis isomorphism generalises Farsi, Kumjian, Pask, Sims (M\\\\\\\"unster J. Math,\\n2019) and Matui (Proc. Lond. Math. Soc, 2012), since we give an explicit\\nformula for the isomorphism and we show that it preserves positive elements.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16510\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16510","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们研究了与局部紧凑、豪斯多夫、第二可数、完全不相连空间上的投射局部同构相对应的 Deaconu-Renault 群组,并描述了当这些群组的 C* 算法是 AF 可嵌入时的特征。我们的主要结果概括了文献中关于图和整数交换 C* 对象的交叉积的定理。我们给出了一个条件,即描述关联的德卡努-雷诺群的 C* 代数的 AF 可嵌入性的射出局部同构。为了证明我们的主要结果,我们分析了AF群的同构群,并证明了一个定理,给出了这些群和相应K理论的同构的明确公式。这个同构概括了Farsi, Kumjian, Pask, Sims (M\"unster J. Math, 2019) 和Matui (Proc. Lond. Math. Soc, 2012),因为我们给出了同构的明确公式,并证明它保留了正元素。
AF Embeddability of the C*-Algebra of a Deaconu-Renault Groupoid
We study Deaconu-Renault groupoids corresponding to surjective local
homeomorphisms on locally compact, Hausdorff, second countable, totally
disconnected spaces, and we characterise when the C*-algebras of these
groupoids are AF embeddable. Our main result generalises theorems in the
literature for graphs and for crossed products of commutative C*-algebras by
the integers. We give a condition on the surjective local homeomorphism that
characterises the AF embeddability of the C*-algebra of the associated
Deaconu-Renault groupoid. In order to prove our main result, we analyse
homology groups for AF groupoids, and we prove a theorem that gives an explicit
formula for the isomorphism of these groups and the corresponding K-theory.
This isomorphism generalises Farsi, Kumjian, Pask, Sims (M\"unster J. Math,
2019) and Matui (Proc. Lond. Math. Soc, 2012), since we give an explicit
formula for the isomorphism and we show that it preserves positive elements.