{"title":"基于改进型 U 网模型的混凝土裂缝实时检测和几何分析算法","authors":"Qian Zhang, Fan Zhang, Hongbo Liu, Longxuan Wang, Zhihua Chen, Liulu Guo","doi":"10.1007/s11554-024-01503-y","DOIUrl":null,"url":null,"abstract":"<p>Aiming at complex operation problems, low precision and poor robustness of traditional concrete crack detection methods, a real-time concrete crack detection and geometric analysis algorithm based on the improved U-net model is proposed. First, the efficient channel attention (ECA) module is embedded in the U-net model to reduce the loss of target information. The DenseNet network is used instead of the VGG16 network in the U-net basic model architecture, making transmitting features and gradients more effective. Then, based on the improved U-net model, the concrete crack detection experiment is performed. The experimental results indicate that the improved U-net model has 91.56% pixel accuracy (PA), 80.12% mean intersection over union (mIoU), 84.89% recall and 88.10% F1_score. The mIoU, PA, recall and F1_score of the improved U-net model increased by 17.39%, 7.82%, 2.62% and 5.10%, respectively, compared with the original model. Next, the real-time detection experiment of concrete cracks is performed based on the improved U-net model. The FPS of the improved model is the same as that of the original model and reaches 42. Finally, the geometric analysis of concrete cracks is performed based on the detection results of the improved U-net model. The area, density, length and average width information of concrete cracks are effectively extracted. The research results indicate that the detection effect of this study’s model on concrete cracks is considerably improved and that the model has good robustness. The model proposed in this study can achieve intelligent real-time and accurate identification of concrete cracks, which has broad application prospects.</p>","PeriodicalId":51224,"journal":{"name":"Journal of Real-Time Image Processing","volume":"1199 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-time detection and geometric analysis algorithm for concrete cracks based on the improved U-net model\",\"authors\":\"Qian Zhang, Fan Zhang, Hongbo Liu, Longxuan Wang, Zhihua Chen, Liulu Guo\",\"doi\":\"10.1007/s11554-024-01503-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Aiming at complex operation problems, low precision and poor robustness of traditional concrete crack detection methods, a real-time concrete crack detection and geometric analysis algorithm based on the improved U-net model is proposed. First, the efficient channel attention (ECA) module is embedded in the U-net model to reduce the loss of target information. The DenseNet network is used instead of the VGG16 network in the U-net basic model architecture, making transmitting features and gradients more effective. Then, based on the improved U-net model, the concrete crack detection experiment is performed. The experimental results indicate that the improved U-net model has 91.56% pixel accuracy (PA), 80.12% mean intersection over union (mIoU), 84.89% recall and 88.10% F1_score. The mIoU, PA, recall and F1_score of the improved U-net model increased by 17.39%, 7.82%, 2.62% and 5.10%, respectively, compared with the original model. Next, the real-time detection experiment of concrete cracks is performed based on the improved U-net model. The FPS of the improved model is the same as that of the original model and reaches 42. Finally, the geometric analysis of concrete cracks is performed based on the detection results of the improved U-net model. The area, density, length and average width information of concrete cracks are effectively extracted. The research results indicate that the detection effect of this study’s model on concrete cracks is considerably improved and that the model has good robustness. The model proposed in this study can achieve intelligent real-time and accurate identification of concrete cracks, which has broad application prospects.</p>\",\"PeriodicalId\":51224,\"journal\":{\"name\":\"Journal of Real-Time Image Processing\",\"volume\":\"1199 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Real-Time Image Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11554-024-01503-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Real-Time Image Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11554-024-01503-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Real-time detection and geometric analysis algorithm for concrete cracks based on the improved U-net model
Aiming at complex operation problems, low precision and poor robustness of traditional concrete crack detection methods, a real-time concrete crack detection and geometric analysis algorithm based on the improved U-net model is proposed. First, the efficient channel attention (ECA) module is embedded in the U-net model to reduce the loss of target information. The DenseNet network is used instead of the VGG16 network in the U-net basic model architecture, making transmitting features and gradients more effective. Then, based on the improved U-net model, the concrete crack detection experiment is performed. The experimental results indicate that the improved U-net model has 91.56% pixel accuracy (PA), 80.12% mean intersection over union (mIoU), 84.89% recall and 88.10% F1_score. The mIoU, PA, recall and F1_score of the improved U-net model increased by 17.39%, 7.82%, 2.62% and 5.10%, respectively, compared with the original model. Next, the real-time detection experiment of concrete cracks is performed based on the improved U-net model. The FPS of the improved model is the same as that of the original model and reaches 42. Finally, the geometric analysis of concrete cracks is performed based on the detection results of the improved U-net model. The area, density, length and average width information of concrete cracks are effectively extracted. The research results indicate that the detection effect of this study’s model on concrete cracks is considerably improved and that the model has good robustness. The model proposed in this study can achieve intelligent real-time and accurate identification of concrete cracks, which has broad application prospects.
期刊介绍:
Due to rapid advancements in integrated circuit technology, the rich theoretical results that have been developed by the image and video processing research community are now being increasingly applied in practical systems to solve real-world image and video processing problems. Such systems involve constraints placed not only on their size, cost, and power consumption, but also on the timeliness of the image data processed.
Examples of such systems are mobile phones, digital still/video/cell-phone cameras, portable media players, personal digital assistants, high-definition television, video surveillance systems, industrial visual inspection systems, medical imaging devices, vision-guided autonomous robots, spectral imaging systems, and many other real-time embedded systems. In these real-time systems, strict timing requirements demand that results are available within a certain interval of time as imposed by the application.
It is often the case that an image processing algorithm is developed and proven theoretically sound, presumably with a specific application in mind, but its practical applications and the detailed steps, methodology, and trade-off analysis required to achieve its real-time performance are not fully explored, leaving these critical and usually non-trivial issues for those wishing to employ the algorithm in a real-time system.
The Journal of Real-Time Image Processing is intended to bridge the gap between the theory and practice of image processing, serving the greater community of researchers, practicing engineers, and industrial professionals who deal with designing, implementing or utilizing image processing systems which must satisfy real-time design constraints.