用灵活的概率神经网络方法进行集合天气预报后处理

IF 3 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES
Peter Mlakar, Janko Merše, Jana Faganeli Pucer
{"title":"用灵活的概率神经网络方法进行集合天气预报后处理","authors":"Peter Mlakar, Janko Merše, Jana Faganeli Pucer","doi":"10.1002/qj.4809","DOIUrl":null,"url":null,"abstract":"Ensemble forecast post‐processing is a necessary step in producing accurate probabilistic forecasts. Many post‐processing methods operate by estimating the parameters of a predetermined probability distribution; others operate on a per‐lead‐time or per‐station basis. All of the aforementioned factors either limit the expressive power of the methods in question or require additional models, one for each lead time and station. We propose a novel, neural network‐based method that produces forecasts for all lead times jointly and requires a single model for all stations. We incorporate normalizing spline flows as flexible parametric distribution estimators, which enables us to model complex forecast distributions. Furthermore, we demonstrate the effectiveness of our method in the context of the EUPPBench benchmark, where we conduct 2‐m temperature forecast post‐processing for stations in a subregion of Europe. We show that our novel method exhibits state‐of‐the‐art performance on the benchmark, improving upon other well‐performing entries. Additionally, by providing a detailed comparison of three variants of our novel post‐processing method, we elucidate the reasons why our method outperforms per‐lead‐time‐based approaches and approaches with distributional assumptions.","PeriodicalId":49646,"journal":{"name":"Quarterly Journal of the Royal Meteorological Society","volume":null,"pages":null},"PeriodicalIF":3.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ensemble weather forecast post‐processing with a flexible probabilistic neural network approach\",\"authors\":\"Peter Mlakar, Janko Merše, Jana Faganeli Pucer\",\"doi\":\"10.1002/qj.4809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ensemble forecast post‐processing is a necessary step in producing accurate probabilistic forecasts. Many post‐processing methods operate by estimating the parameters of a predetermined probability distribution; others operate on a per‐lead‐time or per‐station basis. All of the aforementioned factors either limit the expressive power of the methods in question or require additional models, one for each lead time and station. We propose a novel, neural network‐based method that produces forecasts for all lead times jointly and requires a single model for all stations. We incorporate normalizing spline flows as flexible parametric distribution estimators, which enables us to model complex forecast distributions. Furthermore, we demonstrate the effectiveness of our method in the context of the EUPPBench benchmark, where we conduct 2‐m temperature forecast post‐processing for stations in a subregion of Europe. We show that our novel method exhibits state‐of‐the‐art performance on the benchmark, improving upon other well‐performing entries. Additionally, by providing a detailed comparison of three variants of our novel post‐processing method, we elucidate the reasons why our method outperforms per‐lead‐time‐based approaches and approaches with distributional assumptions.\",\"PeriodicalId\":49646,\"journal\":{\"name\":\"Quarterly Journal of the Royal Meteorological Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quarterly Journal of the Royal Meteorological Society\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1002/qj.4809\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quarterly Journal of the Royal Meteorological Society","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1002/qj.4809","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

集合预报后处理是制作准确概率预报的必要步骤。许多后处理方法都是通过估算预定概率分布的参数来实现的;其他方法则是以每个前导时间或每个站点为基础来实现的。所有上述因素要么限制了相关方法的表达能力,要么需要额外的模型,每个前导时间和站点都需要一个模型。我们提出了一种新颖的、基于神经网络的方法,可联合生成所有前置时间的预测结果,并且只需为所有站点建立一个模型。我们将归一化样条曲线流作为灵活的参数分布估计器,这使我们能够为复杂的预测分布建模。此外,我们还在 EUPPBench 基准中演示了我们方法的有效性,在该基准中,我们对欧洲次区域的站点进行了 2 米气温预报后处理。结果表明,我们的新方法在基准测试中表现出了最先进的性能,比其他表现优异的方法更胜一筹。此外,通过对我们的新型后处理方法的三种变体进行详细比较,我们阐明了我们的方法优于基于每导线时间的方法和基于分布假设的方法的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ensemble weather forecast post‐processing with a flexible probabilistic neural network approach
Ensemble forecast post‐processing is a necessary step in producing accurate probabilistic forecasts. Many post‐processing methods operate by estimating the parameters of a predetermined probability distribution; others operate on a per‐lead‐time or per‐station basis. All of the aforementioned factors either limit the expressive power of the methods in question or require additional models, one for each lead time and station. We propose a novel, neural network‐based method that produces forecasts for all lead times jointly and requires a single model for all stations. We incorporate normalizing spline flows as flexible parametric distribution estimators, which enables us to model complex forecast distributions. Furthermore, we demonstrate the effectiveness of our method in the context of the EUPPBench benchmark, where we conduct 2‐m temperature forecast post‐processing for stations in a subregion of Europe. We show that our novel method exhibits state‐of‐the‐art performance on the benchmark, improving upon other well‐performing entries. Additionally, by providing a detailed comparison of three variants of our novel post‐processing method, we elucidate the reasons why our method outperforms per‐lead‐time‐based approaches and approaches with distributional assumptions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
16.80
自引率
4.50%
发文量
163
审稿时长
3-8 weeks
期刊介绍: The Quarterly Journal of the Royal Meteorological Society is a journal published by the Royal Meteorological Society. It aims to communicate and document new research in the atmospheric sciences and related fields. The journal is considered one of the leading publications in meteorology worldwide. It accepts articles, comprehensive review articles, and comments on published papers. It is published eight times a year, with additional special issues. The Quarterly Journal has a wide readership of scientists in the atmospheric and related fields. It is indexed and abstracted in various databases, including Advanced Polymers Abstracts, Agricultural Engineering Abstracts, CAB Abstracts, CABDirect, COMPENDEX, CSA Civil Engineering Abstracts, Earthquake Engineering Abstracts, Engineered Materials Abstracts, Science Citation Index, SCOPUS, Web of Science, and more.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信