{"title":"利用根瘤菌接种体进行基于真菌的土壤改良","authors":"Cristian Jerez Lazo, Nathan Lee, Priya Tripathi, Leya Joykutty, Krishnaswamy Jayachandran, Seung Jae Lee","doi":"10.1186/s40703-024-00218-0","DOIUrl":null,"url":null,"abstract":"<p>This study demonstrates the efficacy of employing <i>Rhizopus oryzae</i> fungus inoculum as a potential solution to improve soil erodibility in coastal environments. A set of unconfined compression tests is conducted on Miami Beach sand treated with a <i>R. oryzae</i> inoculum. Our findings suggest that the <i>R. oryzae</i> fungus inoculum effectively improves the stability of sand by acting as a natural binding agent. This finding aligns with previous studies that utilized different Rhizopus species, such as <i>Rhizopus oligosporus</i>, to improve sand properties. However, a notable difference is observed; the <i>R. oryzae</i>-treated sand exhibits remarkable durability, maintaining significant strength over an extended period without water or dietary supply. The durability is likely attributable to the morphological characteristics of <i>R. oryzae</i> that extensively branches its mycelial network. This paper shares the new discovery to the bio-geotechnics research community, potentially allowing for the customization of soil improvement process by choosing between the fast-acting <i>R. oligosporus</i> and the longer-lasting <i>R. oryzae</i>.</p>","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":"86 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A fungus-based soil improvement using Rhizopus oryzae inoculum\",\"authors\":\"Cristian Jerez Lazo, Nathan Lee, Priya Tripathi, Leya Joykutty, Krishnaswamy Jayachandran, Seung Jae Lee\",\"doi\":\"10.1186/s40703-024-00218-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study demonstrates the efficacy of employing <i>Rhizopus oryzae</i> fungus inoculum as a potential solution to improve soil erodibility in coastal environments. A set of unconfined compression tests is conducted on Miami Beach sand treated with a <i>R. oryzae</i> inoculum. Our findings suggest that the <i>R. oryzae</i> fungus inoculum effectively improves the stability of sand by acting as a natural binding agent. This finding aligns with previous studies that utilized different Rhizopus species, such as <i>Rhizopus oligosporus</i>, to improve sand properties. However, a notable difference is observed; the <i>R. oryzae</i>-treated sand exhibits remarkable durability, maintaining significant strength over an extended period without water or dietary supply. The durability is likely attributable to the morphological characteristics of <i>R. oryzae</i> that extensively branches its mycelial network. This paper shares the new discovery to the bio-geotechnics research community, potentially allowing for the customization of soil improvement process by choosing between the fast-acting <i>R. oligosporus</i> and the longer-lasting <i>R. oryzae</i>.</p>\",\"PeriodicalId\":44851,\"journal\":{\"name\":\"International Journal of Geo-Engineering\",\"volume\":\"86 1\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Geo-Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1186/s40703-024-00218-0\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geo-Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40703-024-00218-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
摘要
本研究证明了使用根瘤菌接种物作为改善沿海环境土壤可侵蚀性的潜在解决方案的有效性。我们对迈阿密海滩使用根瘤菌接种物处理过的沙子进行了一系列无约束压缩试验。我们的研究结果表明,R. oryzae 真菌接种体作为一种天然结合剂,能有效提高沙子的稳定性。这一发现与之前利用不同的根瘤菌(如寡孢根瘤菌)来改善沙子特性的研究结果一致。然而,我们也发现了一个显著的不同之处:经过根瘤菌处理过的沙子具有显著的耐久性,在长时间没有水或食物供应的情况下仍能保持很高的强度。这种耐久性可能归功于 R. oryzae 的形态特征,即其菌丝网络的广泛分支。本文向生物土工技术研究界分享了这一新发现,通过在速效寡糖酵母菌和长效酵母菌之间进行选择,有可能实现土壤改良过程的定制化。
A fungus-based soil improvement using Rhizopus oryzae inoculum
This study demonstrates the efficacy of employing Rhizopus oryzae fungus inoculum as a potential solution to improve soil erodibility in coastal environments. A set of unconfined compression tests is conducted on Miami Beach sand treated with a R. oryzae inoculum. Our findings suggest that the R. oryzae fungus inoculum effectively improves the stability of sand by acting as a natural binding agent. This finding aligns with previous studies that utilized different Rhizopus species, such as Rhizopus oligosporus, to improve sand properties. However, a notable difference is observed; the R. oryzae-treated sand exhibits remarkable durability, maintaining significant strength over an extended period without water or dietary supply. The durability is likely attributable to the morphological characteristics of R. oryzae that extensively branches its mycelial network. This paper shares the new discovery to the bio-geotechnics research community, potentially allowing for the customization of soil improvement process by choosing between the fast-acting R. oligosporus and the longer-lasting R. oryzae.