求助PDF
{"title":"准线性薛定谔系统孤子解的存在与性质","authors":"Xue Zhang, Jing Zhang","doi":"10.1515/math-2024-0022","DOIUrl":null,"url":null,"abstract":"In this article, we consider the following quasilinear Schrödinger system: <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"block\"> <m:mfenced open=\"{\" close=\"\"> <m:mrow> <m:mtable displaystyle=\"true\"> <m:mtr> <m:mtd columnalign=\"left\"> <m:mo>−</m:mo> <m:mi>ε</m:mi> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> <m:mi>ε</m:mi> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>Δ</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>+</m:mo> <m:mi>β</m:mi> </m:mrow> </m:mfrac> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\"left\"> <m:mo>−</m:mo> <m:mi>ε</m:mi> <m:mi mathvariant=\"normal\">Δ</m:mi> <m:mi>v</m:mi> <m:mo>+</m:mo> <m:mi>v</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> <m:mi>ε</m:mi> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>Δ</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>+</m:mo> <m:mi>β</m:mi> </m:mrow> </m:mfrac> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>v</m:mi> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\"left\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>\\left\\{\\begin{array}{ll}-\\varepsilon \\Delta u+u+\\frac{k}{2}\\varepsilon \\left[\\Delta \\hspace{-0.25em}{| u| }^{2}]u=\\frac{2\\alpha }{\\alpha +\\beta }{| u| }^{\\alpha -2}u{| v| }^{\\beta },& x\\in {{\\mathbb{R}}}^{N},\\\\ -\\varepsilon \\Delta v+v+\\frac{k}{2}\\varepsilon \\left[\\Delta \\hspace{-0.25em}{| v| }^{2}]v=\\frac{2\\beta }{\\alpha +\\beta }{| u| }^{\\alpha }{| v| }^{\\beta -2}v,& x\\in {{\\mathbb{R}}}^{N},\\end{array}\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ε</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>k</m:mi> <m:mo><</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>\\varepsilon \\gt 0,k\\lt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> are real constants, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>N\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:math> <jats:tex-math>\\alpha ,\\beta </jats:tex-math> </jats:alternatives> </jats:inline-formula> are integers multiple of constant 2. By using the Mountain Pass Theorem in a suitable Orlicz space proposed by Abbas Moameni [<jats:italic>Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_999.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msup> <m:mrow> <m:mi mathvariant=\"double-struck\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\mathbb{R}}}^{N}</jats:tex-math> </jats:alternatives> </jats:inline-formula> </jats:italic>, J. Differential Equations 229 (2006), 570–587], we proved the existence of soliton solution <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\left({u}_{\\varepsilon },{v}_{\\varepsilon })</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the above system, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_006.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>({u}_{\\varepsilon }\\left(x),{v}_{\\varepsilon }\\left(x))\\to \\left(0,0)</jats:tex-math> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0022_eq_007.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>∣</m:mo> <m:mi>ε</m:mi> <m:mo>∣</m:mo> <m:mo>→</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>| \\varepsilon | \\to 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and properties of soliton solution for the quasilinear Schrödinger system\",\"authors\":\"Xue Zhang, Jing Zhang\",\"doi\":\"10.1515/math-2024-0022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we consider the following quasilinear Schrödinger system: <jats:disp-formula> <jats:alternatives> <jats:graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0022_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"block\\\"> <m:mfenced open=\\\"{\\\" close=\\\"\\\"> <m:mrow> <m:mtable displaystyle=\\\"true\\\"> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mo>−</m:mo> <m:mi>ε</m:mi> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mi>u</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> <m:mi>ε</m:mi> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>Δ</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mi>u</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>α</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>+</m:mo> <m:mi>β</m:mi> </m:mrow> </m:mfrac> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>u</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:mtd> </m:mtr> <m:mtr> <m:mtd columnalign=\\\"left\\\"> <m:mo>−</m:mo> <m:mi>ε</m:mi> <m:mi mathvariant=\\\"normal\\\">Δ</m:mi> <m:mi>v</m:mi> <m:mo>+</m:mo> <m:mi>v</m:mi> <m:mo>+</m:mo> <m:mfrac> <m:mrow> <m:mi>k</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:mfrac> <m:mi>ε</m:mi> <m:mrow> <m:mo>[</m:mo> <m:mrow> <m:mi>Δ</m:mi> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msup> </m:mrow> <m:mo>]</m:mo> </m:mrow> <m:mi>v</m:mi> <m:mo>=</m:mo> <m:mfrac> <m:mrow> <m:mn>2</m:mn> <m:mi>β</m:mi> </m:mrow> <m:mrow> <m:mi>α</m:mi> <m:mo>+</m:mo> <m:mi>β</m:mi> </m:mrow> </m:mfrac> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>u</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>α</m:mi> </m:mrow> </m:msup> <m:msup> <m:mrow> <m:mo>∣</m:mo> <m:mi>v</m:mi> <m:mo>∣</m:mo> </m:mrow> <m:mrow> <m:mi>β</m:mi> <m:mo>−</m:mo> <m:mn>2</m:mn> </m:mrow> </m:msup> <m:mi>v</m:mi> <m:mo>,</m:mo> </m:mtd> <m:mtd columnalign=\\\"left\\\"> <m:mi>x</m:mi> <m:mo>∈</m:mo> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> <m:mo>,</m:mo> </m:mtd> </m:mtr> </m:mtable> </m:mrow> </m:mfenced> </m:math> <jats:tex-math>\\\\left\\\\{\\\\begin{array}{ll}-\\\\varepsilon \\\\Delta u+u+\\\\frac{k}{2}\\\\varepsilon \\\\left[\\\\Delta \\\\hspace{-0.25em}{| u| }^{2}]u=\\\\frac{2\\\\alpha }{\\\\alpha +\\\\beta }{| u| }^{\\\\alpha -2}u{| v| }^{\\\\beta },& x\\\\in {{\\\\mathbb{R}}}^{N},\\\\\\\\ -\\\\varepsilon \\\\Delta v+v+\\\\frac{k}{2}\\\\varepsilon \\\\left[\\\\Delta \\\\hspace{-0.25em}{| v| }^{2}]v=\\\\frac{2\\\\beta }{\\\\alpha +\\\\beta }{| u| }^{\\\\alpha }{| v| }^{\\\\beta -2}v,& x\\\\in {{\\\\mathbb{R}}}^{N},\\\\end{array}\\\\right.</jats:tex-math> </jats:alternatives> </jats:disp-formula> where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0022_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>ε</m:mi> <m:mo>></m:mo> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mi>k</m:mi> <m:mo><</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>\\\\varepsilon \\\\gt 0,k\\\\lt 0</jats:tex-math> </jats:alternatives> </jats:inline-formula> are real constants, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0022_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>N</m:mi> <m:mo>≥</m:mo> <m:mn>3</m:mn> </m:math> <jats:tex-math>N\\\\ge 3</jats:tex-math> </jats:alternatives> </jats:inline-formula>, <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0022_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>α</m:mi> <m:mo>,</m:mo> <m:mi>β</m:mi> </m:math> <jats:tex-math>\\\\alpha ,\\\\beta </jats:tex-math> </jats:alternatives> </jats:inline-formula> are integers multiple of constant 2. By using the Mountain Pass Theorem in a suitable Orlicz space proposed by Abbas Moameni [<jats:italic>Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0022_eq_999.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msup> <m:mrow> <m:mi mathvariant=\\\"double-struck\\\">R</m:mi> </m:mrow> <m:mrow> <m:mi>N</m:mi> </m:mrow> </m:msup> </m:math> <jats:tex-math>{{\\\\mathbb{R}}}^{N}</jats:tex-math> </jats:alternatives> </jats:inline-formula> </jats:italic>, J. Differential Equations 229 (2006), 570–587], we proved the existence of soliton solution <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0022_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>\\\\left({u}_{\\\\varepsilon },{v}_{\\\\varepsilon })</jats:tex-math> </jats:alternatives> </jats:inline-formula> for the above system, and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0022_eq_006.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mrow> <m:mo stretchy=\\\"false\\\">(</m:mo> <m:mrow> <m:msub> <m:mrow> <m:mi>u</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> <m:mo>,</m:mo> <m:msub> <m:mrow> <m:mi>v</m:mi> </m:mrow> <m:mrow> <m:mi>ε</m:mi> </m:mrow> </m:msub> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mi>x</m:mi> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:mrow> <m:mo stretchy=\\\"false\\\">)</m:mo> </m:mrow> <m:mo>→</m:mo> <m:mrow> <m:mo>(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>,</m:mo> <m:mn>0</m:mn> </m:mrow> <m:mo>)</m:mo> </m:mrow> </m:math> <jats:tex-math>({u}_{\\\\varepsilon }\\\\left(x),{v}_{\\\\varepsilon }\\\\left(x))\\\\to \\\\left(0,0)</jats:tex-math> </jats:alternatives> </jats:inline-formula> as <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0022_eq_007.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>∣</m:mo> <m:mi>ε</m:mi> <m:mo>∣</m:mo> <m:mo>→</m:mo> <m:mn>0</m:mn> </m:math> <jats:tex-math>| \\\\varepsilon | \\\\to 0</jats:tex-math> </jats:alternatives> </jats:inline-formula>.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0022\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0022","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
引用
批量引用
摘要
在本文中,我们考虑以下准线性薛定谔系统: - ε Δ u + u + k 2 ε [ Δ ∣ u ∣ 2 ] u = 2 α α + β ∣ u ∣ α - 2 u ∣ v ∣ β , x∈ R N 、 - ε Δ v + v + k 2 ε [ Δ ∣ v ∣ 2 ] v = 2 β α + β ∣ u ∣ α ∣ v ∣ β - 2 v 、 x∈ R N , \left\{\begin{array}{ll}-\varepsilon \Delta u+u+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| u| }^{2}]u=\frac{2\alpha }{alpha +\beta }{u| }^{\alpha -2}u{| v| }^{beta },& x\in {{\mathbb{R}}}^{N},\ -\varepsilon\Delta v+v+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| v| }^{2}]v=\frac{2\beta }{alpha +\beta }{| u| }^{\alpha }{| v| }^{beta -2}v,& x\in {{\mathbb{R}}}^{N},\end{array}\right. 其中 ε > 0 , k < 0 \varepsilon \gt 0,k\lt 0 都是实常数,N ≥ 3 N\ge 3 , α , β \alpha ,\beta 都是常数 2 的整数倍。通过使用 Abbas Moameni [Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in R N {{mathbb{R}}}^{N}] 提出的合适 Orlicz 空间中的山口定理,J. 微分方程 229 (J. Differential Equations 229).Differential Equations 229 (2006), 570-587], 我们证明了上述系统存在孤子解 ( u ε , v ε ) \left({u}_{\varepsilon },{v}_{\varepsilon }), 且 ( u ε ( x ) , v ε ( x ) ) → ( 0 , 0 ) ({u}_{v}_{varepsilon }\left(x))\to \left(0,0) as ∣ ε ∣ → 0 | \varepsilon | \to 0 .
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and properties of soliton solution for the quasilinear Schrödinger system
In this article, we consider the following quasilinear Schrödinger system: − ε Δ u + u + k 2 ε [ Δ ∣ u ∣ 2 ] u = 2 α α + β ∣ u ∣ α − 2 u ∣ v ∣ β , x ∈ R N , − ε Δ v + v + k 2 ε [ Δ ∣ v ∣ 2 ] v = 2 β α + β ∣ u ∣ α ∣ v ∣ β − 2 v , x ∈ R N , \left\{\begin{array}{ll}-\varepsilon \Delta u+u+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| u| }^{2}]u=\frac{2\alpha }{\alpha +\beta }{| u| }^{\alpha -2}u{| v| }^{\beta },& x\in {{\mathbb{R}}}^{N},\\ -\varepsilon \Delta v+v+\frac{k}{2}\varepsilon \left[\Delta \hspace{-0.25em}{| v| }^{2}]v=\frac{2\beta }{\alpha +\beta }{| u| }^{\alpha }{| v| }^{\beta -2}v,& x\in {{\mathbb{R}}}^{N},\end{array}\right. where ε > 0 , k < 0 \varepsilon \gt 0,k\lt 0 are real constants, N ≥ 3 N\ge 3 , α , β \alpha ,\beta are integers multiple of constant 2. By using the Mountain Pass Theorem in a suitable Orlicz space proposed by Abbas Moameni [Existence of soliton solutions for a quasilinear Schrödinger equation involving critical exponent in R N {{\mathbb{R}}}^{N} , J. Differential Equations 229 (2006), 570–587], we proved the existence of soliton solution ( u ε , v ε ) \left({u}_{\varepsilon },{v}_{\varepsilon }) for the above system, and ( u ε ( x ) , v ε ( x ) ) → ( 0 , 0 ) ({u}_{\varepsilon }\left(x),{v}_{\varepsilon }\left(x))\to \left(0,0) as ∣ ε ∣ → 0 | \varepsilon | \to 0 .