Somayeh Mirzadeh, Hasan Barsam, Loredana Ciurdariu
{"title":"应用于最小化直流函数的上支撑最小元素的特征","authors":"Somayeh Mirzadeh, Hasan Barsam, Loredana Ciurdariu","doi":"10.1515/math-2024-0030","DOIUrl":null,"url":null,"abstract":"In this study, we discuss on the problem of minimizing the differences of two non-positive valued increasing, co-radiant and quasi-concave (ICRQC) functions defined on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0030_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> (where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0030_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a real locally convex topological vector space). For this purpose, we first gave different characterizations of the upper support set’s minimal elements of non-positive co-radiant functions. Then, we presented sufficient and necessary conditions for the global minimizers of the differences of two non-positive ICRQC functions.","PeriodicalId":48713,"journal":{"name":"Open Mathematics","volume":"73 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of minimal elements of upper support with applications in minimizing DC functions\",\"authors\":\"Somayeh Mirzadeh, Hasan Barsam, Loredana Ciurdariu\",\"doi\":\"10.1515/math-2024-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we discuss on the problem of minimizing the differences of two non-positive valued increasing, co-radiant and quasi-concave (ICRQC) functions defined on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0030_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> (where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0030_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a real locally convex topological vector space). For this purpose, we first gave different characterizations of the upper support set’s minimal elements of non-positive co-radiant functions. Then, we presented sufficient and necessary conditions for the global minimizers of the differences of two non-positive ICRQC functions.\",\"PeriodicalId\":48713,\"journal\":{\"name\":\"Open Mathematics\",\"volume\":\"73 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0030\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0030","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,我们讨论了如何最小化定义在 X X(其中 X X 是实局部凸拓扑向量空间)上的两个非正值递增、共垂和准凹(ICRQC)函数之差的问题。为此,我们首先给出了非正共射函数上支持集最小元素的不同特征。然后,我们提出了两个非正 ICRQC 函数之差的全局最小值的充分和必要条件。
Characterizations of minimal elements of upper support with applications in minimizing DC functions
In this study, we discuss on the problem of minimizing the differences of two non-positive valued increasing, co-radiant and quasi-concave (ICRQC) functions defined on XX (where XX is a real locally convex topological vector space). For this purpose, we first gave different characterizations of the upper support set’s minimal elements of non-positive co-radiant functions. Then, we presented sufficient and necessary conditions for the global minimizers of the differences of two non-positive ICRQC functions.
期刊介绍:
Open Mathematics - formerly Central European Journal of Mathematics
Open Mathematics is a fully peer-reviewed, open access, electronic journal that publishes significant, original and relevant works in all areas of mathematics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication.
Open Mathematics is listed in Thomson Reuters - Current Contents/Physical, Chemical and Earth Sciences. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
Aims and Scope
The journal aims at presenting high-impact and relevant research on topics across the full span of mathematics. Coverage includes: