Somayeh Mirzadeh, Hasan Barsam, Loredana Ciurdariu
{"title":"应用于最小化直流函数的上支撑最小元素的特征","authors":"Somayeh Mirzadeh, Hasan Barsam, Loredana Ciurdariu","doi":"10.1515/math-2024-0030","DOIUrl":null,"url":null,"abstract":"In this study, we discuss on the problem of minimizing the differences of two non-positive valued increasing, co-radiant and quasi-concave (ICRQC) functions defined on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0030_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> (where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_math-2024-0030_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a real locally convex topological vector space). For this purpose, we first gave different characterizations of the upper support set’s minimal elements of non-positive co-radiant functions. Then, we presented sufficient and necessary conditions for the global minimizers of the differences of two non-positive ICRQC functions.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Characterizations of minimal elements of upper support with applications in minimizing DC functions\",\"authors\":\"Somayeh Mirzadeh, Hasan Barsam, Loredana Ciurdariu\",\"doi\":\"10.1515/math-2024-0030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we discuss on the problem of minimizing the differences of two non-positive valued increasing, co-radiant and quasi-concave (ICRQC) functions defined on <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0030_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> (where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_math-2024-0030_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mi>X</m:mi> </m:math> <jats:tex-math>X</jats:tex-math> </jats:alternatives> </jats:inline-formula> is a real locally convex topological vector space). For this purpose, we first gave different characterizations of the upper support set’s minimal elements of non-positive co-radiant functions. Then, we presented sufficient and necessary conditions for the global minimizers of the differences of two non-positive ICRQC functions.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/math-2024-0030\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/math-2024-0030","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在本研究中,我们讨论了如何最小化定义在 X X(其中 X X 是实局部凸拓扑向量空间)上的两个非正值递增、共垂和准凹(ICRQC)函数之差的问题。为此,我们首先给出了非正共射函数上支持集最小元素的不同特征。然后,我们提出了两个非正 ICRQC 函数之差的全局最小值的充分和必要条件。
Characterizations of minimal elements of upper support with applications in minimizing DC functions
In this study, we discuss on the problem of minimizing the differences of two non-positive valued increasing, co-radiant and quasi-concave (ICRQC) functions defined on XX (where XX is a real locally convex topological vector space). For this purpose, we first gave different characterizations of the upper support set’s minimal elements of non-positive co-radiant functions. Then, we presented sufficient and necessary conditions for the global minimizers of the differences of two non-positive ICRQC functions.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.