用于旋翼机吊耳部件的热塑性 CF-UD/PEKK 材料的静态和疲劳特性研究

IF 0.7 4区 材料科学 Q4 MATERIALS SCIENCE, CHARACTERIZATION & TESTING
U. G. Çakıcı, R. E. Ece, S. Toros, T. Apatay, B. Yıldırım
{"title":"用于旋翼机吊耳部件的热塑性 CF-UD/PEKK 材料的静态和疲劳特性研究","authors":"U. G. Çakıcı, R. E. Ece, S. Toros, T. Apatay, B. Yıldırım","doi":"10.1007/s11223-024-00655-3","DOIUrl":null,"url":null,"abstract":"<p>In rotary wing aircraft, composite lug structures are perforated structures that connect the rotor and blades. They play a significant structural role in rotary wing aircraft. In this study the effect of lay-up parameters on mechanical strength of a thick composite part that represents a blade root. This part is autoclave manufactured polyetherketoneketone matrix carbon fiber reinforced (CF/PEKK) composites, which have recently been researched for usage in defense and aerospace is investigated. The chosen material carbon-fiber-reinforced polyetherketoneketone composites (CF-PEKK) have an excellent mechanical, physical, thermal performance. Aerospace sector has a special interest on this material due to material’s low density and versatility. In this study, static and fatigue performance of rotorcraft lug part were investigated by applying non-destructive-test (NDT) methods and the mechanical strength values were discussed according to the experimental results. It has been observed that the component parts with ∓45° layup has the highest mechanical strength. As a result of the static and fatigue tests, it is seen that satisfactorily performance in the view of the both static and dynamic loading states.</p>","PeriodicalId":22007,"journal":{"name":"Strength of Materials","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of Static and Fatigue Characteristics of Thermoplastic CF-UD/PEKK Material for Rotorcraft Lug Parts\",\"authors\":\"U. G. Çakıcı, R. E. Ece, S. Toros, T. Apatay, B. Yıldırım\",\"doi\":\"10.1007/s11223-024-00655-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In rotary wing aircraft, composite lug structures are perforated structures that connect the rotor and blades. They play a significant structural role in rotary wing aircraft. In this study the effect of lay-up parameters on mechanical strength of a thick composite part that represents a blade root. This part is autoclave manufactured polyetherketoneketone matrix carbon fiber reinforced (CF/PEKK) composites, which have recently been researched for usage in defense and aerospace is investigated. The chosen material carbon-fiber-reinforced polyetherketoneketone composites (CF-PEKK) have an excellent mechanical, physical, thermal performance. Aerospace sector has a special interest on this material due to material’s low density and versatility. In this study, static and fatigue performance of rotorcraft lug part were investigated by applying non-destructive-test (NDT) methods and the mechanical strength values were discussed according to the experimental results. It has been observed that the component parts with ∓45° layup has the highest mechanical strength. As a result of the static and fatigue tests, it is seen that satisfactorily performance in the view of the both static and dynamic loading states.</p>\",\"PeriodicalId\":22007,\"journal\":{\"name\":\"Strength of Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Strength of Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11223-024-00655-3\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strength of Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11223-024-00655-3","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 0

摘要

在旋翼飞机中,复合片结构是连接旋翼和叶片的穿孔结构。它们在旋翼飞机中发挥着重要的结构作用。本研究探讨了铺层参数对代表叶片根部的厚复合材料部件机械强度的影响。该部件是高压釜制造的聚醚酮酮基碳纤维增强(CF/PEKK)复合材料,最近已被研究用于国防和航空航天领域。所选材料碳纤维增强聚醚醚酮复合材料(CF-PEKK)具有优异的机械、物理和热性能。由于这种材料密度低、用途广,航空航天领域对其特别感兴趣。本研究采用无损检测(NDT)方法研究了旋翼机吊耳部件的静态和疲劳性能,并根据实验结果讨论了机械强度值。结果表明,∓45°铺层的部件具有最高的机械强度。静态和疲劳试验的结果表明,无论在静态还是动态负载状态下,其性能都令人满意。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Investigation of Static and Fatigue Characteristics of Thermoplastic CF-UD/PEKK Material for Rotorcraft Lug Parts

Investigation of Static and Fatigue Characteristics of Thermoplastic CF-UD/PEKK Material for Rotorcraft Lug Parts

In rotary wing aircraft, composite lug structures are perforated structures that connect the rotor and blades. They play a significant structural role in rotary wing aircraft. In this study the effect of lay-up parameters on mechanical strength of a thick composite part that represents a blade root. This part is autoclave manufactured polyetherketoneketone matrix carbon fiber reinforced (CF/PEKK) composites, which have recently been researched for usage in defense and aerospace is investigated. The chosen material carbon-fiber-reinforced polyetherketoneketone composites (CF-PEKK) have an excellent mechanical, physical, thermal performance. Aerospace sector has a special interest on this material due to material’s low density and versatility. In this study, static and fatigue performance of rotorcraft lug part were investigated by applying non-destructive-test (NDT) methods and the mechanical strength values were discussed according to the experimental results. It has been observed that the component parts with ∓45° layup has the highest mechanical strength. As a result of the static and fatigue tests, it is seen that satisfactorily performance in the view of the both static and dynamic loading states.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Strength of Materials
Strength of Materials MATERIALS SCIENCE, CHARACTERIZATION & TESTING-
CiteScore
1.20
自引率
14.30%
发文量
89
审稿时长
6-12 weeks
期刊介绍: Strength of Materials focuses on the strength of materials and structural components subjected to different types of force and thermal loadings, the limiting strength criteria of structures, and the theory of strength of structures. Consideration is given to actual operating conditions, problems of crack resistance and theories of failure, the theory of oscillations of real mechanical systems, and calculations of the stress-strain state of structural components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信