针对一类部分观测的片断确定性马尔可夫过程的多级粒子过滤器

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Ajay Jasra, Kengo Kamatani, Mohamed Maama
{"title":"针对一类部分观测的片断确定性马尔可夫过程的多级粒子过滤器","authors":"Ajay Jasra, Kengo Kamatani, Mohamed Maama","doi":"10.1137/23m1600505","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2475-A2502, August 2024. <br/> Abstract. In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes. In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. We develop, based upon the approach in Lemaire, Thieullen, and Thomas [Adv. Appl. Probab., 52 (2020), pp. 138–172], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameters of the algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multilevel Particle Filters for a Class of Partially Observed Piecewise Deterministic Markov Processes\",\"authors\":\"Ajay Jasra, Kengo Kamatani, Mohamed Maama\",\"doi\":\"10.1137/23m1600505\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2475-A2502, August 2024. <br/> Abstract. In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes. In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. We develop, based upon the approach in Lemaire, Thieullen, and Thomas [Adv. Appl. Probab., 52 (2020), pp. 138–172], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameters of the algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.\",\"PeriodicalId\":3,\"journal\":{\"name\":\"ACS Applied Electronic Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Electronic Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1600505\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1600505","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 科学计算期刊》,第 46 卷第 4 期,第 A2475-A2502 页,2024 年 8 月。 摘要本文考虑了一类部分观测的片断确定性马尔可夫过程的滤波问题。特别是,我们假设一个常微分方程(ODE)驱动着确定性元素,并且只能通过时间离散化进行数值求解。我们根据 Lemaire、Thieullen 和 Thomas [Adv. Appl. Probab.,52 (2020),pp. 138-172] 中的方法,开发了一种新的粒子和多级粒子滤波器 (MLPF),以近似与离散化 ODE 相关的滤波器。我们提供了与 MLPF 相关的均方误差约束,这为算法模拟参数的设置提供了指导,并意味着与使用粒子滤波器相比,可以获得显著的计算收益。我们的理论主张在几个数值示例中得到了证实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multilevel Particle Filters for a Class of Partially Observed Piecewise Deterministic Markov Processes
SIAM Journal on Scientific Computing, Volume 46, Issue 4, Page A2475-A2502, August 2024.
Abstract. In this paper we consider the filtering of a class of partially observed piecewise deterministic Markov processes. In particular, we assume that an ordinary differential equation (ODE) drives the deterministic element and can only be solved numerically via a time discretization. We develop, based upon the approach in Lemaire, Thieullen, and Thomas [Adv. Appl. Probab., 52 (2020), pp. 138–172], a new particle and multilevel particle filter (MLPF) in order to approximate the filter associated to the discretized ODE. We provide a bound on the mean square error associated to the MLPF which provides guidance on setting the simulation parameters of the algorithm and implies that significant computational gains can be obtained versus using a particle filter. Our theoretical claims are confirmed in several numerical examples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信