{"title":"无约束优化的有限记忆梯度法","authors":"Giulia Ferrandi, Michiel E. Hochstenbach","doi":"10.1007/s11075-024-01895-9","DOIUrl":null,"url":null,"abstract":"<p>The limited memory steepest descent method (LMSD, Fletcher, 2012) for unconstrained optimization problems stores a few past gradients to compute multiple stepsizes at once. We review this method and propose new variants. For strictly convex quadratic objective functions, we study the numerical behavior of different techniques to compute new stepsizes. In particular, we introduce a method to improve the use of harmonic Ritz values. We also show the existence of a secant condition associated with LMSD, where the approximating Hessian is projected onto a low-dimensional space. In the general nonlinear case, we propose two new alternatives to Fletcher’s method: first, the addition of symmetry constraints to the secant condition valid for the quadratic case; second, a perturbation of the last differences between consecutive gradients, to satisfy multiple secant equations simultaneously. We show that Fletcher’s method can also be interpreted from this viewpoint.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Limited memory gradient methods for unconstrained optimization\",\"authors\":\"Giulia Ferrandi, Michiel E. Hochstenbach\",\"doi\":\"10.1007/s11075-024-01895-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The limited memory steepest descent method (LMSD, Fletcher, 2012) for unconstrained optimization problems stores a few past gradients to compute multiple stepsizes at once. We review this method and propose new variants. For strictly convex quadratic objective functions, we study the numerical behavior of different techniques to compute new stepsizes. In particular, we introduce a method to improve the use of harmonic Ritz values. We also show the existence of a secant condition associated with LMSD, where the approximating Hessian is projected onto a low-dimensional space. In the general nonlinear case, we propose two new alternatives to Fletcher’s method: first, the addition of symmetry constraints to the secant condition valid for the quadratic case; second, a perturbation of the last differences between consecutive gradients, to satisfy multiple secant equations simultaneously. We show that Fletcher’s method can also be interpreted from this viewpoint.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11075-024-01895-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01895-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Limited memory gradient methods for unconstrained optimization
The limited memory steepest descent method (LMSD, Fletcher, 2012) for unconstrained optimization problems stores a few past gradients to compute multiple stepsizes at once. We review this method and propose new variants. For strictly convex quadratic objective functions, we study the numerical behavior of different techniques to compute new stepsizes. In particular, we introduce a method to improve the use of harmonic Ritz values. We also show the existence of a secant condition associated with LMSD, where the approximating Hessian is projected onto a low-dimensional space. In the general nonlinear case, we propose two new alternatives to Fletcher’s method: first, the addition of symmetry constraints to the secant condition valid for the quadratic case; second, a perturbation of the last differences between consecutive gradients, to satisfy multiple secant equations simultaneously. We show that Fletcher’s method can also be interpreted from this viewpoint.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.