$A+A \to A$, $\; \; B+A \to A$

Roger Tribe, Oleg Zaboronski
{"title":"$A+A \\to A$, $\\; \\; B+A \\to A$","authors":"Roger Tribe, Oleg Zaboronski","doi":"arxiv-2407.18212","DOIUrl":null,"url":null,"abstract":"This paper considers the decay in particle intensities for a translation\ninvariant two species system of diffusing and reacting particles on\n$\\mathbb{Z}^d$ for $d \\geq 3$. The intensities are shown to approximately solve\nmodified rate equations, from which their polynomial decay can be deduced. The\nsystem illustrates that the underlying diffusion and reaction rates can\ninfluence the exact polynomial decay rates, despite the system evolving in a\nsupercritical dimension.","PeriodicalId":501245,"journal":{"name":"arXiv - MATH - Probability","volume":"72 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$A+A \\\\to A$, $\\\\; \\\\; B+A \\\\to A$\",\"authors\":\"Roger Tribe, Oleg Zaboronski\",\"doi\":\"arxiv-2407.18212\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper considers the decay in particle intensities for a translation\\ninvariant two species system of diffusing and reacting particles on\\n$\\\\mathbb{Z}^d$ for $d \\\\geq 3$. The intensities are shown to approximately solve\\nmodified rate equations, from which their polynomial decay can be deduced. The\\nsystem illustrates that the underlying diffusion and reaction rates can\\ninfluence the exact polynomial decay rates, despite the system evolving in a\\nsupercritical dimension.\",\"PeriodicalId\":501245,\"journal\":{\"name\":\"arXiv - MATH - Probability\",\"volume\":\"72 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Probability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.18212\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Probability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.18212","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了在$d \geq 3$条件下,$mathbb{Z}^d$上扩散和反应粒子的平移不变双物种系统的粒子强度衰减问题。结果表明,粒子强度近似地求解了修正的速率方程,由此可以推导出它们的多项式衰减。该系统说明,尽管系统在超临界维度中演化,但基本的扩散和反应速率会影响精确的多项式衰减速率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
$A+A \to A$, $\; \; B+A \to A$
This paper considers the decay in particle intensities for a translation invariant two species system of diffusing and reacting particles on $\mathbb{Z}^d$ for $d \geq 3$. The intensities are shown to approximately solve modified rate equations, from which their polynomial decay can be deduced. The system illustrates that the underlying diffusion and reaction rates can influence the exact polynomial decay rates, despite the system evolving in a supercritical dimension.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信