二维时间分数电报方程的非均匀时间网格二阶加权 ADI 方案

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lisha Chen, Zhibo Wang, Seakweng Vong
{"title":"二维时间分数电报方程的非均匀时间网格二阶加权 ADI 方案","authors":"Lisha Chen, Zhibo Wang, Seakweng Vong","doi":"10.1007/s12190-024-02200-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, based on the weighted alternating direction implicit method, we investigate a second-order scheme with variable steps for the two-dimensional time-fractional telegraph equation (TFTE). Firstly, we derive a coupled system of the original equation by the symmetric fractional-order reduction (SFOR) method. Then the renowned <i>L</i>2-<span>\\(1_\\sigma \\)</span> formula on graded meshes is employed to approximate the Caputo derivative and a weighted ADI scheme for the coupled problem is constructed. In addition, with the aid of the Grönwall inequality, the unconditional stability and convergence of the weighted ADI scheme are analyzed. Finally, the numerical experiments are shown to verify the effectiveness and correctness of theoretical results.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation\",\"authors\":\"Lisha Chen, Zhibo Wang, Seakweng Vong\",\"doi\":\"10.1007/s12190-024-02200-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, based on the weighted alternating direction implicit method, we investigate a second-order scheme with variable steps for the two-dimensional time-fractional telegraph equation (TFTE). Firstly, we derive a coupled system of the original equation by the symmetric fractional-order reduction (SFOR) method. Then the renowned <i>L</i>2-<span>\\\\(1_\\\\sigma \\\\)</span> formula on graded meshes is employed to approximate the Caputo derivative and a weighted ADI scheme for the coupled problem is constructed. In addition, with the aid of the Grönwall inequality, the unconditional stability and convergence of the weighted ADI scheme are analyzed. Finally, the numerical experiments are shown to verify the effectiveness and correctness of theoretical results.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s12190-024-02200-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s12190-024-02200-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

本文以加权交替方向隐含法为基础,研究了二维时间分数电报方程(TFTE)的变步二阶方案。首先,我们用对称分阶还原法(SFOR)推导出原方程的耦合系统。然后,利用梯度网格上著名的 L2-\(1_\sigma \)公式来近似 Caputo 导数,并构建了耦合问题的加权 ADI 方案。此外,借助格伦沃尔不等式,分析了加权 ADI 方案的无条件稳定性和收敛性。最后,通过数值实验验证了理论结果的有效性和正确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A second-order weighted ADI scheme with nonuniform time grids for the two-dimensional time-fractional telegraph equation

In this paper, based on the weighted alternating direction implicit method, we investigate a second-order scheme with variable steps for the two-dimensional time-fractional telegraph equation (TFTE). Firstly, we derive a coupled system of the original equation by the symmetric fractional-order reduction (SFOR) method. Then the renowned L2-\(1_\sigma \) formula on graded meshes is employed to approximate the Caputo derivative and a weighted ADI scheme for the coupled problem is constructed. In addition, with the aid of the Grönwall inequality, the unconditional stability and convergence of the weighted ADI scheme are analyzed. Finally, the numerical experiments are shown to verify the effectiveness and correctness of theoretical results.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信