脉动通风对空气污染物去除性能的快速流动模拟研究

IF 6.1 1区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Pengzhi Zhou, Haidong Wang, Yuwei Dai, Chen Huang
{"title":"脉动通风对空气污染物去除性能的快速流动模拟研究","authors":"Pengzhi Zhou, Haidong Wang, Yuwei Dai, Chen Huang","doi":"10.1007/s12273-024-1145-2","DOIUrl":null,"url":null,"abstract":"<p>Fast flow simulation is imperative in the design of pulsating ventilation, which is potentially efficient in indoor air contaminant removal. The execution of the conventional CFD method requires considerable amount of computational resources. In this study, five different numerical schemes were proposed based on fast fluid dynamics (FFD) and fractional step (FS) methods, and were evaluated to achieve quick simulation of airflow/contaminant dispersion. One of these numerical schemes was identified with the best overall computing efficiency for investigating the performance of pulsating ventilation. With this numerical scheme at hand, the air contaminant removal effectiveness of different ventilation types was evaluated. Two kinds of pulsating ventilation and one kind of steady ventilation were tested upon a benchmark isothermal mixing chamber. The effect of adjusting supply velocity parameters on the ventilation performance was also investigated. CO<sub>2</sub> concentration, airflow pattern, and vortex structure of different ventilation types were illustrated and analyzed. The results reveal that the FS method is more suitable for transient simulation of wall-bounded indoor airflow than the FFD method, and 34%–51% of computing time could be saved compared to the conventional CFD method. Regarding the choice of ventilation type, steady ventilation might result in short-circuit airflow and stagnant zones; alternatively, pulsating ventilation has greater potential in air contaminant removal due to its ever-changing vortex structure.</p>","PeriodicalId":49226,"journal":{"name":"Building Simulation","volume":"37 1","pages":""},"PeriodicalIF":6.1000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fast flow simulation study of pulsating ventilation performance on air contaminant removal\",\"authors\":\"Pengzhi Zhou, Haidong Wang, Yuwei Dai, Chen Huang\",\"doi\":\"10.1007/s12273-024-1145-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fast flow simulation is imperative in the design of pulsating ventilation, which is potentially efficient in indoor air contaminant removal. The execution of the conventional CFD method requires considerable amount of computational resources. In this study, five different numerical schemes were proposed based on fast fluid dynamics (FFD) and fractional step (FS) methods, and were evaluated to achieve quick simulation of airflow/contaminant dispersion. One of these numerical schemes was identified with the best overall computing efficiency for investigating the performance of pulsating ventilation. With this numerical scheme at hand, the air contaminant removal effectiveness of different ventilation types was evaluated. Two kinds of pulsating ventilation and one kind of steady ventilation were tested upon a benchmark isothermal mixing chamber. The effect of adjusting supply velocity parameters on the ventilation performance was also investigated. CO<sub>2</sub> concentration, airflow pattern, and vortex structure of different ventilation types were illustrated and analyzed. The results reveal that the FS method is more suitable for transient simulation of wall-bounded indoor airflow than the FFD method, and 34%–51% of computing time could be saved compared to the conventional CFD method. Regarding the choice of ventilation type, steady ventilation might result in short-circuit airflow and stagnant zones; alternatively, pulsating ventilation has greater potential in air contaminant removal due to its ever-changing vortex structure.</p>\",\"PeriodicalId\":49226,\"journal\":{\"name\":\"Building Simulation\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Building Simulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s12273-024-1145-2\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Building Simulation","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s12273-024-1145-2","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

快速流动模拟是脉动通风设计的当务之急,它可以有效地去除室内空气中的污染物。执行传统的 CFD 方法需要大量的计算资源。本研究基于快速流体动力学(FFD)和分数步长(FS)方法提出了五种不同的数值方案,并对其进行了评估,以实现气流/污染物扩散的快速模拟。其中一种数值方案的整体计算效率最高,可用于研究脉动通风的性能。利用这一数值方案,对不同通风类型的空气污染物去除效果进行了评估。在基准等温混合室中测试了两种脉动通风和一种稳定通风。此外,还研究了调整送风速度参数对通风性能的影响。对不同通风类型的 CO2 浓度、气流模式和涡流结构进行了说明和分析。结果表明,与 FFD 方法相比,FS 方法更适合对有墙壁约束的室内气流进行瞬态模拟,与传统的 CFD 方法相比,可节省 34%-51% 的计算时间。在通风类型的选择上,稳定通风可能会导致气流短路和滞留区;而脉动通风由于其不断变化的涡流结构,在清除空气污染物方面具有更大的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast flow simulation study of pulsating ventilation performance on air contaminant removal

Fast flow simulation is imperative in the design of pulsating ventilation, which is potentially efficient in indoor air contaminant removal. The execution of the conventional CFD method requires considerable amount of computational resources. In this study, five different numerical schemes were proposed based on fast fluid dynamics (FFD) and fractional step (FS) methods, and were evaluated to achieve quick simulation of airflow/contaminant dispersion. One of these numerical schemes was identified with the best overall computing efficiency for investigating the performance of pulsating ventilation. With this numerical scheme at hand, the air contaminant removal effectiveness of different ventilation types was evaluated. Two kinds of pulsating ventilation and one kind of steady ventilation were tested upon a benchmark isothermal mixing chamber. The effect of adjusting supply velocity parameters on the ventilation performance was also investigated. CO2 concentration, airflow pattern, and vortex structure of different ventilation types were illustrated and analyzed. The results reveal that the FS method is more suitable for transient simulation of wall-bounded indoor airflow than the FFD method, and 34%–51% of computing time could be saved compared to the conventional CFD method. Regarding the choice of ventilation type, steady ventilation might result in short-circuit airflow and stagnant zones; alternatively, pulsating ventilation has greater potential in air contaminant removal due to its ever-changing vortex structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Building Simulation
Building Simulation THERMODYNAMICS-CONSTRUCTION & BUILDING TECHNOLOGY
CiteScore
10.20
自引率
16.40%
发文量
0
审稿时长
>12 weeks
期刊介绍: Building Simulation: An International Journal publishes original, high quality, peer-reviewed research papers and review articles dealing with modeling and simulation of buildings including their systems. The goal is to promote the field of building science and technology to such a level that modeling will eventually be used in every aspect of building construction as a routine instead of an exception. Of particular interest are papers that reflect recent developments and applications of modeling tools and their impact on advances of building science and technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信