论塞格雷-维罗纳嵌入的非缺陷性

IF 1 3区 数学 Q1 MATHEMATICS
Edoardo Ballico
{"title":"论塞格雷-维罗纳嵌入的非缺陷性","authors":"Edoardo Ballico","doi":"10.1007/s00209-024-03573-x","DOIUrl":null,"url":null,"abstract":"<p>We prove a theorem which implies that all Segre–Veronese varieties of multidegree <span>\\((d_1,\\dots ,d_k)\\)</span> and format <span>\\((n_1,\\dots ,n_k)\\)</span> with <span>\\(n_1\\ge \\cdots \\ge n_k&gt;0\\)</span> are not defective if <span>\\(d_1\\ge 3\\)</span>, <span>\\(d_2\\ge 3\\)</span> and <span>\\(d_i\\ge 2\\)</span> for all <span>\\(i&gt;2\\)</span>. As a particular case we prove the non-defectivity of any Segre–Veronese variety with at least 2 factors and <span>\\(d_i\\ge 3\\)</span> for all <i>i</i>, extending to the case <span>\\(k&gt;2\\)</span> a theorem of Galuppi and Oneto. Our general result also shows that many Segre–Veronese varieties with 2 factors are not secant defective if they are embedded in bidegree (<i>x</i>, 2), <span>\\(x\\ge 4\\)</span>.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"43 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the non-defectivity of Segre–Veronese embeddings\",\"authors\":\"Edoardo Ballico\",\"doi\":\"10.1007/s00209-024-03573-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We prove a theorem which implies that all Segre–Veronese varieties of multidegree <span>\\\\((d_1,\\\\dots ,d_k)\\\\)</span> and format <span>\\\\((n_1,\\\\dots ,n_k)\\\\)</span> with <span>\\\\(n_1\\\\ge \\\\cdots \\\\ge n_k&gt;0\\\\)</span> are not defective if <span>\\\\(d_1\\\\ge 3\\\\)</span>, <span>\\\\(d_2\\\\ge 3\\\\)</span> and <span>\\\\(d_i\\\\ge 2\\\\)</span> for all <span>\\\\(i&gt;2\\\\)</span>. As a particular case we prove the non-defectivity of any Segre–Veronese variety with at least 2 factors and <span>\\\\(d_i\\\\ge 3\\\\)</span> for all <i>i</i>, extending to the case <span>\\\\(k&gt;2\\\\)</span> a theorem of Galuppi and Oneto. Our general result also shows that many Segre–Veronese varieties with 2 factors are not secant defective if they are embedded in bidegree (<i>x</i>, 2), <span>\\\\(x\\\\ge 4\\\\)</span>.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03573-x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03573-x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了一个定理,它意味着所有多度((d_1,\dots ,d_k))和格式((n_1,\dots ,n_k))的 Segre-Veronese varieties with \(n_1ge \cdots \ge n_k>;如果对于所有的(i>2)来说,(d_1ge 3\ )、(d_2ge 3\ )和(d_ige 2\ )都不是有缺陷的。)作为一个特例,我们证明了任何至少有2个因子的Segre-Veronese品种的非缺陷性,并且对于所有的i来说都是\(d_i\ge 3\) ,这就把Galuppi和Oneto的一个定理扩展到了\(k>2\)的情况。我们的一般结果还表明,许多有2个因子的Segre-Veronese变种如果嵌入双度(x,2),就不是secant缺陷的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the non-defectivity of Segre–Veronese embeddings

We prove a theorem which implies that all Segre–Veronese varieties of multidegree \((d_1,\dots ,d_k)\) and format \((n_1,\dots ,n_k)\) with \(n_1\ge \cdots \ge n_k>0\) are not defective if \(d_1\ge 3\), \(d_2\ge 3\) and \(d_i\ge 2\) for all \(i>2\). As a particular case we prove the non-defectivity of any Segre–Veronese variety with at least 2 factors and \(d_i\ge 3\) for all i, extending to the case \(k>2\) a theorem of Galuppi and Oneto. Our general result also shows that many Segre–Veronese varieties with 2 factors are not secant defective if they are embedded in bidegree (x, 2), \(x\ge 4\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信