{"title":"CR 流形上托普利兹算子的函数微积分和量化与还原相通","authors":"Andrea Galasso, Chin-Yu Hsiao","doi":"10.1007/s00209-024-03561-1","DOIUrl":null,"url":null,"abstract":"<p>Given a CR manifold with non-degenerate Levi form, we show that the operators of the functional calculus for Toeplitz operators are complex Fourier integral operators of Szegő type. As an application, we establish semi-classical asymptotics for the dimension of the spectral spaces of Toeplitz operators. We then consider a CR manifold with a compact Lie group action <i>G</i> and we establish quantization commutes with reduction for Toeplitz operators. Moreover, we also compute semi-classical asymptotics for the dimension of the spectral spaces of <i>G</i>-invariant Toeplitz operators.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"40 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Functional calculus and quantization commutes with reduction for Toeplitz operators on CR manifolds\",\"authors\":\"Andrea Galasso, Chin-Yu Hsiao\",\"doi\":\"10.1007/s00209-024-03561-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a CR manifold with non-degenerate Levi form, we show that the operators of the functional calculus for Toeplitz operators are complex Fourier integral operators of Szegő type. As an application, we establish semi-classical asymptotics for the dimension of the spectral spaces of Toeplitz operators. We then consider a CR manifold with a compact Lie group action <i>G</i> and we establish quantization commutes with reduction for Toeplitz operators. Moreover, we also compute semi-classical asymptotics for the dimension of the spectral spaces of <i>G</i>-invariant Toeplitz operators.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"40 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03561-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03561-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
给定一个具有非退化列维形式的 CR 流形,我们证明托普利兹算子的函数微积分算子是 Szegő 型的复傅里叶积分算子。作为应用,我们建立了托普利兹算子谱空间维度的半经典渐近线。然后,我们考虑了一个具有紧凑李群作用 G 的 CR 流形,并为托普利兹算子建立了量子化与还原的对应关系。此外,我们还计算了 G 不变托普利兹算子谱空间维度的半经典渐近线。
Functional calculus and quantization commutes with reduction for Toeplitz operators on CR manifolds
Given a CR manifold with non-degenerate Levi form, we show that the operators of the functional calculus for Toeplitz operators are complex Fourier integral operators of Szegő type. As an application, we establish semi-classical asymptotics for the dimension of the spectral spaces of Toeplitz operators. We then consider a CR manifold with a compact Lie group action G and we establish quantization commutes with reduction for Toeplitz operators. Moreover, we also compute semi-classical asymptotics for the dimension of the spectral spaces of G-invariant Toeplitz operators.