代数超hemes的自形群函数

IF 1 3区 数学 Q1 MATHEMATICS
A. N. Zubkov
{"title":"代数超hemes的自形群函数","authors":"A. N. Zubkov","doi":"10.1007/s00209-024-03572-y","DOIUrl":null,"url":null,"abstract":"<p>The famous theorem of Matsumura–Oort states that if <i>X</i> is a proper scheme, then the automorphism group functor <span>\\(\\mathfrak {Aut}(X)\\)</span> of <i>X</i> is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if <span>\\({\\mathbb {X}}\\)</span> is a proper superscheme, then the automorphism group functor <span>\\(\\mathfrak {Aut}({\\mathbb {X}})\\)</span> of <span>\\({\\mathbb {X}}\\)</span> is a locally algebraic group superscheme. Moreover, we also show that if <span>\\(H^1(X, {\\mathchoice{\\text{ T }}{\\text{ T }}{\\text{ T }}{\\text{ T }}}_X)=0\\)</span>, where <i>X</i> is the geometric counterpart of <span>\\({\\mathbb {X}}\\)</span> and <span>\\({\\mathchoice{\\text{ T }}{\\text{ T }}{\\text{ T }}{\\text{ T }}}_X\\)</span> is the tangent sheaf of <i>X</i>, then <span>\\(\\mathfrak {Aut}({\\mathbb {X}})\\)</span> is a smooth group superscheme.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"56 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automorphism group functors of algebraic superschemes\",\"authors\":\"A. N. Zubkov\",\"doi\":\"10.1007/s00209-024-03572-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The famous theorem of Matsumura–Oort states that if <i>X</i> is a proper scheme, then the automorphism group functor <span>\\\\(\\\\mathfrak {Aut}(X)\\\\)</span> of <i>X</i> is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if <span>\\\\({\\\\mathbb {X}}\\\\)</span> is a proper superscheme, then the automorphism group functor <span>\\\\(\\\\mathfrak {Aut}({\\\\mathbb {X}})\\\\)</span> of <span>\\\\({\\\\mathbb {X}}\\\\)</span> is a locally algebraic group superscheme. Moreover, we also show that if <span>\\\\(H^1(X, {\\\\mathchoice{\\\\text{ T }}{\\\\text{ T }}{\\\\text{ T }}{\\\\text{ T }}}_X)=0\\\\)</span>, where <i>X</i> is the geometric counterpart of <span>\\\\({\\\\mathbb {X}}\\\\)</span> and <span>\\\\({\\\\mathchoice{\\\\text{ T }}{\\\\text{ T }}{\\\\text{ T }}{\\\\text{ T }}}_X\\\\)</span> is the tangent sheaf of <i>X</i>, then <span>\\\\(\\\\mathfrak {Aut}({\\\\mathbb {X}})\\\\)</span> is a smooth group superscheme.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03572-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03572-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

松村-奥尔特(Matsumura-Oort)的著名定理指出,如果 X 是一个合适的方案,那么 X 的自变群函子(\mathfrak {Aut}(X)\) 是一个局部代数群方案。在本文中,我们把这个定理推广到了超方案范畴,即如果 \({\mathbb {X}}\) 是一个合适的超方案,那么 \({\mathbb {X}}\) 的自变量群函子 \(\mathfrak {Aut}({\mathbb {X}})\) 是一个局部代数群超方案。此外,我们还证明了如果 \(H^1(X, {\mathchoice\{text{ T }}{text{ T }}\{text{ T }}{text{ T }}_X)=0\)、其中 X 是 \({\mathbb {X}}\) 的几何对应物,\({/mathchoice{\text{ T }}{text{ T }}{text{ T }}{text{ T }}\_X) 是 X 的切线剪切,那么 \(\mathfrak {Aut}({\mathbb {X}})\) 是一个光滑群超群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Automorphism group functors of algebraic superschemes

The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor \(\mathfrak {Aut}(X)\) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if \({\mathbb {X}}\) is a proper superscheme, then the automorphism group functor \(\mathfrak {Aut}({\mathbb {X}})\) of \({\mathbb {X}}\) is a locally algebraic group superscheme. Moreover, we also show that if \(H^1(X, {\mathchoice{\text{ T }}{\text{ T }}{\text{ T }}{\text{ T }}}_X)=0\), where X is the geometric counterpart of \({\mathbb {X}}\) and \({\mathchoice{\text{ T }}{\text{ T }}{\text{ T }}{\text{ T }}}_X\) is the tangent sheaf of X, then \(\mathfrak {Aut}({\mathbb {X}})\) is a smooth group superscheme.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信