{"title":"代数超hemes的自形群函数","authors":"A. N. Zubkov","doi":"10.1007/s00209-024-03572-y","DOIUrl":null,"url":null,"abstract":"<p>The famous theorem of Matsumura–Oort states that if <i>X</i> is a proper scheme, then the automorphism group functor <span>\\(\\mathfrak {Aut}(X)\\)</span> of <i>X</i> is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if <span>\\({\\mathbb {X}}\\)</span> is a proper superscheme, then the automorphism group functor <span>\\(\\mathfrak {Aut}({\\mathbb {X}})\\)</span> of <span>\\({\\mathbb {X}}\\)</span> is a locally algebraic group superscheme. Moreover, we also show that if <span>\\(H^1(X, {\\mathchoice{\\text{ T }}{\\text{ T }}{\\text{ T }}{\\text{ T }}}_X)=0\\)</span>, where <i>X</i> is the geometric counterpart of <span>\\({\\mathbb {X}}\\)</span> and <span>\\({\\mathchoice{\\text{ T }}{\\text{ T }}{\\text{ T }}{\\text{ T }}}_X\\)</span> is the tangent sheaf of <i>X</i>, then <span>\\(\\mathfrak {Aut}({\\mathbb {X}})\\)</span> is a smooth group superscheme.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"56 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automorphism group functors of algebraic superschemes\",\"authors\":\"A. N. Zubkov\",\"doi\":\"10.1007/s00209-024-03572-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The famous theorem of Matsumura–Oort states that if <i>X</i> is a proper scheme, then the automorphism group functor <span>\\\\(\\\\mathfrak {Aut}(X)\\\\)</span> of <i>X</i> is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if <span>\\\\({\\\\mathbb {X}}\\\\)</span> is a proper superscheme, then the automorphism group functor <span>\\\\(\\\\mathfrak {Aut}({\\\\mathbb {X}})\\\\)</span> of <span>\\\\({\\\\mathbb {X}}\\\\)</span> is a locally algebraic group superscheme. Moreover, we also show that if <span>\\\\(H^1(X, {\\\\mathchoice{\\\\text{ T }}{\\\\text{ T }}{\\\\text{ T }}{\\\\text{ T }}}_X)=0\\\\)</span>, where <i>X</i> is the geometric counterpart of <span>\\\\({\\\\mathbb {X}}\\\\)</span> and <span>\\\\({\\\\mathchoice{\\\\text{ T }}{\\\\text{ T }}{\\\\text{ T }}{\\\\text{ T }}}_X\\\\)</span> is the tangent sheaf of <i>X</i>, then <span>\\\\(\\\\mathfrak {Aut}({\\\\mathbb {X}})\\\\)</span> is a smooth group superscheme.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03572-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03572-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
松村-奥尔特(Matsumura-Oort)的著名定理指出,如果 X 是一个合适的方案,那么 X 的自变群函子(\mathfrak {Aut}(X)\) 是一个局部代数群方案。在本文中,我们把这个定理推广到了超方案范畴,即如果 \({\mathbb {X}}\) 是一个合适的超方案,那么 \({\mathbb {X}}\) 的自变量群函子 \(\mathfrak {Aut}({\mathbb {X}})\) 是一个局部代数群超方案。此外,我们还证明了如果 \(H^1(X, {\mathchoice\{text{ T }}{text{ T }}\{text{ T }}{text{ T }}_X)=0\)、其中 X 是 \({\mathbb {X}}\) 的几何对应物,\({/mathchoice{\text{ T }}{text{ T }}{text{ T }}{text{ T }}\_X) 是 X 的切线剪切,那么 \(\mathfrak {Aut}({\mathbb {X}})\) 是一个光滑群超群。
Automorphism group functors of algebraic superschemes
The famous theorem of Matsumura–Oort states that if X is a proper scheme, then the automorphism group functor \(\mathfrak {Aut}(X)\) of X is a locally algebraic group scheme. In this paper we generalize this theorem to the category of superschemes, that is if \({\mathbb {X}}\) is a proper superscheme, then the automorphism group functor \(\mathfrak {Aut}({\mathbb {X}})\) of \({\mathbb {X}}\) is a locally algebraic group superscheme. Moreover, we also show that if \(H^1(X, {\mathchoice{\text{ T }}{\text{ T }}{\text{ T }}{\text{ T }}}_X)=0\), where X is the geometric counterpart of \({\mathbb {X}}\) and \({\mathchoice{\text{ T }}{\text{ T }}{\text{ T }}{\text{ T }}}_X\) is the tangent sheaf of X, then \(\mathfrak {Aut}({\mathbb {X}})\) is a smooth group superscheme.