简单类型理论中的数学结构

IF 0.6 3区 数学 Q2 LOGIC
Samuel González-Castillo
{"title":"简单类型理论中的数学结构","authors":"Samuel González-Castillo","doi":"10.1007/s11225-024-10133-1","DOIUrl":null,"url":null,"abstract":"<p>We present an extension of simple type theory that incorporates types for any kind of mathematical structure (of any order). We further extend this system allowing isomorphic structures to be identified within these types thanks to some syntactical restrictions; for this purpose, we formally define what it means for two structures to be isomorphic. We model both extensions in NFU set theory in order to prove their relative consistency.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"46 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Structures Within Simple Type Theory\",\"authors\":\"Samuel González-Castillo\",\"doi\":\"10.1007/s11225-024-10133-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an extension of simple type theory that incorporates types for any kind of mathematical structure (of any order). We further extend this system allowing isomorphic structures to be identified within these types thanks to some syntactical restrictions; for this purpose, we formally define what it means for two structures to be isomorphic. We model both extensions in NFU set theory in order to prove their relative consistency.</p>\",\"PeriodicalId\":48979,\"journal\":{\"name\":\"Studia Logica\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Logica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-024-10133-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10133-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了简单类型理论的扩展,它包含了任何类型的数学结构(任何顺序)的类型。为此,我们正式定义了两个结构同构的含义。我们在 NFU 集合论中为这两种扩展建模,以证明它们的相对一致性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mathematical Structures Within Simple Type Theory

We present an extension of simple type theory that incorporates types for any kind of mathematical structure (of any order). We further extend this system allowing isomorphic structures to be identified within these types thanks to some syntactical restrictions; for this purpose, we formally define what it means for two structures to be isomorphic. We model both extensions in NFU set theory in order to prove their relative consistency.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studia Logica
Studia Logica MATHEMATICS-LOGIC
CiteScore
1.70
自引率
14.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信