{"title":"简单类型理论中的数学结构","authors":"Samuel González-Castillo","doi":"10.1007/s11225-024-10133-1","DOIUrl":null,"url":null,"abstract":"<p>We present an extension of simple type theory that incorporates types for any kind of mathematical structure (of any order). We further extend this system allowing isomorphic structures to be identified within these types thanks to some syntactical restrictions; for this purpose, we formally define what it means for two structures to be isomorphic. We model both extensions in NFU set theory in order to prove their relative consistency.</p>","PeriodicalId":48979,"journal":{"name":"Studia Logica","volume":"46 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mathematical Structures Within Simple Type Theory\",\"authors\":\"Samuel González-Castillo\",\"doi\":\"10.1007/s11225-024-10133-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present an extension of simple type theory that incorporates types for any kind of mathematical structure (of any order). We further extend this system allowing isomorphic structures to be identified within these types thanks to some syntactical restrictions; for this purpose, we formally define what it means for two structures to be isomorphic. We model both extensions in NFU set theory in order to prove their relative consistency.</p>\",\"PeriodicalId\":48979,\"journal\":{\"name\":\"Studia Logica\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studia Logica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11225-024-10133-1\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"LOGIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Logica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11225-024-10133-1","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"LOGIC","Score":null,"Total":0}
We present an extension of simple type theory that incorporates types for any kind of mathematical structure (of any order). We further extend this system allowing isomorphic structures to be identified within these types thanks to some syntactical restrictions; for this purpose, we formally define what it means for two structures to be isomorphic. We model both extensions in NFU set theory in order to prove their relative consistency.
期刊介绍:
The leading idea of Lvov-Warsaw School of Logic, Philosophy and Mathematics was to investigate philosophical problems by means of rigorous methods of mathematics. Evidence of the great success the School experienced is the fact that it has become generally recognized as Polish Style Logic. Today Polish Style Logic is no longer exclusively a Polish speciality. It is represented by numerous logicians, mathematicians and philosophers from research centers all over the world.