Steven E. Yochum, Tyler Wible, Matthew Korsa, Mahshid Ghanbari, Mazdak Arabi
{"title":"洪水潜势门户网站:了解洪水变化和预测洪峰流量的网络工具","authors":"Steven E. Yochum, Tyler Wible, Matthew Korsa, Mahshid Ghanbari, Mazdak Arabi","doi":"10.1002/rra.4354","DOIUrl":null,"url":null,"abstract":"The Flood Potential Portal (<jats:ext-link xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"https://floodpotential.erams.com/\">https://floodpotential.erams.com/</jats:ext-link>) has been developed for the contiguous United States, as a practitioner‐focused tool that uses observational data (streamgages) to enhance understanding of how floods vary in space and time, and assist users in making more informed peak discharge predictions for infrastructure design and floodplain management. This capability is presented through several modules. The Mapping module provides tools to explore variability using multiple indices, and provides detailed information, figures, and algorithms describing and comparing flooding characteristics. The Cross‐Section Analysis module allows users to cut regional‐scale sections to interpret the role of topography in driving flood variability. The Watershed Analysis module provides multiple methods for quantifying expected peak discharge magnitudes and flood frequency relationships at user‐selected locations, including the integration of observed trends in flood magnitudes due to climate change and other sources of nonstationarity into decision making. The Streamgage Analysis module performs streamgage flood‐frequency analyses. These modules are based in part on the flood potential method, through the use of 207 zones of similar flood response defined using more than 8200 streamgages with watershed areas <10,000 km<jats:sup>2</jats:sup>. Regression models that define each zone had high explained variance (average <jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.93). An example is provided to illustrate use of the Flood Potential Portal for the design of a hypothetical bridge replacement.","PeriodicalId":21513,"journal":{"name":"River Research and Applications","volume":"45 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flood Potential Portal: A web tool for understanding flood variability and predicting peak discharges\",\"authors\":\"Steven E. Yochum, Tyler Wible, Matthew Korsa, Mahshid Ghanbari, Mazdak Arabi\",\"doi\":\"10.1002/rra.4354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Flood Potential Portal (<jats:ext-link xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"https://floodpotential.erams.com/\\\">https://floodpotential.erams.com/</jats:ext-link>) has been developed for the contiguous United States, as a practitioner‐focused tool that uses observational data (streamgages) to enhance understanding of how floods vary in space and time, and assist users in making more informed peak discharge predictions for infrastructure design and floodplain management. This capability is presented through several modules. The Mapping module provides tools to explore variability using multiple indices, and provides detailed information, figures, and algorithms describing and comparing flooding characteristics. The Cross‐Section Analysis module allows users to cut regional‐scale sections to interpret the role of topography in driving flood variability. The Watershed Analysis module provides multiple methods for quantifying expected peak discharge magnitudes and flood frequency relationships at user‐selected locations, including the integration of observed trends in flood magnitudes due to climate change and other sources of nonstationarity into decision making. The Streamgage Analysis module performs streamgage flood‐frequency analyses. These modules are based in part on the flood potential method, through the use of 207 zones of similar flood response defined using more than 8200 streamgages with watershed areas <10,000 km<jats:sup>2</jats:sup>. Regression models that define each zone had high explained variance (average <jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.93). An example is provided to illustrate use of the Flood Potential Portal for the design of a hypothetical bridge replacement.\",\"PeriodicalId\":21513,\"journal\":{\"name\":\"River Research and Applications\",\"volume\":\"45 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"River Research and Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rra.4354\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"River Research and Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4354","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Flood Potential Portal: A web tool for understanding flood variability and predicting peak discharges
The Flood Potential Portal (https://floodpotential.erams.com/) has been developed for the contiguous United States, as a practitioner‐focused tool that uses observational data (streamgages) to enhance understanding of how floods vary in space and time, and assist users in making more informed peak discharge predictions for infrastructure design and floodplain management. This capability is presented through several modules. The Mapping module provides tools to explore variability using multiple indices, and provides detailed information, figures, and algorithms describing and comparing flooding characteristics. The Cross‐Section Analysis module allows users to cut regional‐scale sections to interpret the role of topography in driving flood variability. The Watershed Analysis module provides multiple methods for quantifying expected peak discharge magnitudes and flood frequency relationships at user‐selected locations, including the integration of observed trends in flood magnitudes due to climate change and other sources of nonstationarity into decision making. The Streamgage Analysis module performs streamgage flood‐frequency analyses. These modules are based in part on the flood potential method, through the use of 207 zones of similar flood response defined using more than 8200 streamgages with watershed areas <10,000 km2. Regression models that define each zone had high explained variance (average R2 = 0.93). An example is provided to illustrate use of the Flood Potential Portal for the design of a hypothetical bridge replacement.
期刊介绍:
River Research and Applications , previously published as Regulated Rivers: Research and Management (1987-2001), is an international journal dedicated to the promotion of basic and applied scientific research on rivers. The journal publishes original scientific and technical papers on biological, ecological, geomorphological, hydrological, engineering and geographical aspects related to rivers in both the developed and developing world. Papers showing how basic studies and new science can be of use in applied problems associated with river management, regulation and restoration are encouraged as is interdisciplinary research concerned directly or indirectly with river management problems.