{"title":"通过科斯祖尔复数的定向格拉斯曼的模 2 同调环","authors":"Ákos K. Matszangosz, Matthias Wendt","doi":"10.1007/s00209-024-03556-y","DOIUrl":null,"url":null,"abstract":"<p>We study the structure of mod 2 cohomology rings of oriented Grassmannians <span>\\(\\widetilde{{\\text {Gr}}}_k(n)\\)</span> of oriented <i>k</i>-planes in <span>\\({\\mathbb {R}}^n\\)</span>. Our main focus is on the structure of the cohomology ring <span>\\(\\textrm{H}^*(\\widetilde{{\\text {Gr}}}_k(n);{\\mathbb {F}}_2)\\)</span> as a module over the characteristic subring <i>C</i>, which is the subring generated by the Stiefel–Whitney classes <span>\\(w_2,\\ldots ,w_k\\)</span>. We identify this module structure using Koszul complexes, which involves the syzygies between the relations defining <i>C</i>. We give an infinite family of such syzygies, which results in a new upper bound on the characteristic rank of <span>\\(\\widetilde{{\\text {Gr}}}_k(2^t)\\)</span>, <span>\\(k<2^t\\)</span>, and formulate a conjecture on the exact value of the characteristic rank of <span>\\(\\widetilde{{\\text {Gr}}}_k(n)\\)</span>. For the case <span>\\(k=3\\)</span>, we use the Koszul complex to compute a presentation of the cohomology ring <span>\\(H=\\textrm{H}^*(\\widetilde{{\\text {Gr}}}_3(n);{\\mathbb {F}}_2)\\)</span> for <span>\\(2^{t-1}<n\\le 2^t-4\\)</span> for <span>\\(t\\ge 4\\)</span>, complementing existing descriptions in the cases <span>\\(n=2^t-i\\)</span>, <span>\\(i=0,1,2,3\\)</span> for <span>\\(t\\ge 3\\)</span>. More precisely, as a <i>C</i>-module, <i>H</i> splits as a direct sum of the characteristic subring <i>C</i> and the anomalous module <i>H</i>/<i>C</i>, and we compute a complete presentation of <i>H</i>/<i>C</i> as a <i>C</i>-module from the Koszul complex. We also discuss various issues that arise for the cases <span>\\(k>3\\)</span>, supported by computer calculation.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"46 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The mod 2 cohomology rings of oriented Grassmannians via Koszul complexes\",\"authors\":\"Ákos K. Matszangosz, Matthias Wendt\",\"doi\":\"10.1007/s00209-024-03556-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the structure of mod 2 cohomology rings of oriented Grassmannians <span>\\\\(\\\\widetilde{{\\\\text {Gr}}}_k(n)\\\\)</span> of oriented <i>k</i>-planes in <span>\\\\({\\\\mathbb {R}}^n\\\\)</span>. Our main focus is on the structure of the cohomology ring <span>\\\\(\\\\textrm{H}^*(\\\\widetilde{{\\\\text {Gr}}}_k(n);{\\\\mathbb {F}}_2)\\\\)</span> as a module over the characteristic subring <i>C</i>, which is the subring generated by the Stiefel–Whitney classes <span>\\\\(w_2,\\\\ldots ,w_k\\\\)</span>. We identify this module structure using Koszul complexes, which involves the syzygies between the relations defining <i>C</i>. We give an infinite family of such syzygies, which results in a new upper bound on the characteristic rank of <span>\\\\(\\\\widetilde{{\\\\text {Gr}}}_k(2^t)\\\\)</span>, <span>\\\\(k<2^t\\\\)</span>, and formulate a conjecture on the exact value of the characteristic rank of <span>\\\\(\\\\widetilde{{\\\\text {Gr}}}_k(n)\\\\)</span>. For the case <span>\\\\(k=3\\\\)</span>, we use the Koszul complex to compute a presentation of the cohomology ring <span>\\\\(H=\\\\textrm{H}^*(\\\\widetilde{{\\\\text {Gr}}}_3(n);{\\\\mathbb {F}}_2)\\\\)</span> for <span>\\\\(2^{t-1}<n\\\\le 2^t-4\\\\)</span> for <span>\\\\(t\\\\ge 4\\\\)</span>, complementing existing descriptions in the cases <span>\\\\(n=2^t-i\\\\)</span>, <span>\\\\(i=0,1,2,3\\\\)</span> for <span>\\\\(t\\\\ge 3\\\\)</span>. More precisely, as a <i>C</i>-module, <i>H</i> splits as a direct sum of the characteristic subring <i>C</i> and the anomalous module <i>H</i>/<i>C</i>, and we compute a complete presentation of <i>H</i>/<i>C</i> as a <i>C</i>-module from the Koszul complex. We also discuss various issues that arise for the cases <span>\\\\(k>3\\\\)</span>, supported by computer calculation.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03556-y\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03556-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们研究的是\({\mathbb {R}}^n\) 中面向 k 平面的面向格拉斯曼的 mod 2 同调环的结构。我们主要关注的是:同调环 \(\textrm{H}^*(\widetilde{\{text {Gr}}}_k(n);{\mathbb {F}}_2)\) 作为特征子环 C 上的模块的结构,特征子环 C 是由 Stiefel-Whitney 类 \(w_2,\ldots ,w_k\) 生成的子环。我们使用科斯祖尔复数来识别这种模块结构,这涉及定义 C 的关系之间的协同作用。我们给出了这种协同关系的一个无穷族,从而得出了 \(\widetilde{{text {Gr}}}_k(2^t)\), \(k<2^t\) 的特征秩的新上界,并提出了关于 \(\widetilde{{text {Gr}}}_k(n)\) 的特征秩的精确值的猜想。对于 \(k=3\) 的情况,我们使用科斯祖尔复数来计算同调环 \(H=\textrm{H}^*(\widetilde{\{text {Gr}}}_3(n);(2^{t-1}<n\le2^t-4\) for (t\ge 4\), supplementing existing descriptions in the cases \(n=2^t-i\), \(i=0,1,2,3\) for (t\ge 3\ ).更确切地说,作为一个 C 模块,H 分裂为特征子环 C 与反常模块 H/C 的直接和,我们从科斯祖尔复数计算了 H/C 作为 C 模块的完整呈现。在计算机计算的支持下,我们还讨论了在(k>3\)情况下出现的各种问题。
The mod 2 cohomology rings of oriented Grassmannians via Koszul complexes
We study the structure of mod 2 cohomology rings of oriented Grassmannians \(\widetilde{{\text {Gr}}}_k(n)\) of oriented k-planes in \({\mathbb {R}}^n\). Our main focus is on the structure of the cohomology ring \(\textrm{H}^*(\widetilde{{\text {Gr}}}_k(n);{\mathbb {F}}_2)\) as a module over the characteristic subring C, which is the subring generated by the Stiefel–Whitney classes \(w_2,\ldots ,w_k\). We identify this module structure using Koszul complexes, which involves the syzygies between the relations defining C. We give an infinite family of such syzygies, which results in a new upper bound on the characteristic rank of \(\widetilde{{\text {Gr}}}_k(2^t)\), \(k<2^t\), and formulate a conjecture on the exact value of the characteristic rank of \(\widetilde{{\text {Gr}}}_k(n)\). For the case \(k=3\), we use the Koszul complex to compute a presentation of the cohomology ring \(H=\textrm{H}^*(\widetilde{{\text {Gr}}}_3(n);{\mathbb {F}}_2)\) for \(2^{t-1}<n\le 2^t-4\) for \(t\ge 4\), complementing existing descriptions in the cases \(n=2^t-i\), \(i=0,1,2,3\) for \(t\ge 3\). More precisely, as a C-module, H splits as a direct sum of the characteristic subring C and the anomalous module H/C, and we compute a complete presentation of H/C as a C-module from the Koszul complex. We also discuss various issues that arise for the cases \(k>3\), supported by computer calculation.