网络中的学位分布:超越幂律

IF 1.4 3区 数学 Q2 STATISTICS & PROBABILITY
Clement Lee, Emma F. Eastoe, Aiden Farrell
{"title":"网络中的学位分布:超越幂律","authors":"Clement Lee, Emma F. Eastoe, Aiden Farrell","doi":"10.1111/stan.12355","DOIUrl":null,"url":null,"abstract":"The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold needs to be preselected without its uncertainty quantified, that the power law is simply inadequate, and that subsequent hypothesis tests are required to determine whether the data could have come from the power law. We propose a modeling framework that combines two different generalizations of the power law, namely the generalized Pareto distribution and the Zipf‐polylog distribution, to resolve these issues. The proposed mixture distributions are shown to fit the data well and quantify the threshold uncertainty in a natural way. A model selection step embedded in the Bayesian inference algorithm further answers the question whether the power law is adequate.","PeriodicalId":51178,"journal":{"name":"Statistica Neerlandica","volume":"47 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Degree distributions in networks: Beyond the power law\",\"authors\":\"Clement Lee, Emma F. Eastoe, Aiden Farrell\",\"doi\":\"10.1111/stan.12355\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold needs to be preselected without its uncertainty quantified, that the power law is simply inadequate, and that subsequent hypothesis tests are required to determine whether the data could have come from the power law. We propose a modeling framework that combines two different generalizations of the power law, namely the generalized Pareto distribution and the Zipf‐polylog distribution, to resolve these issues. The proposed mixture distributions are shown to fit the data well and quantify the threshold uncertainty in a natural way. A model selection step embedded in the Bayesian inference algorithm further answers the question whether the power law is adequate.\",\"PeriodicalId\":51178,\"journal\":{\"name\":\"Statistica Neerlandica\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistica Neerlandica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1111/stan.12355\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistica Neerlandica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1111/stan.12355","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

幂律适用于描述网络度和词频等计数现象。只需一个参数,它就能捕捉到频率在对数尺度上呈线性的主要特征。然而,也有人对幂律提出了批评,例如,需要预先选择一个阈值,而不对其不确定性进行量化;幂律根本不够充分;需要进行后续的假设检验来确定数据是否来自幂律。为了解决这些问题,我们提出了一个建模框架,将幂律的两种不同概括(即广义帕累托分布和 Zipf-Polylog 分布)结合起来。结果表明,所提出的混合分布能够很好地拟合数据,并以自然的方式量化阈值的不确定性。贝叶斯推理算法中的模型选择步骤进一步回答了幂律是否合适的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Degree distributions in networks: Beyond the power law
The power law is useful in describing count phenomena such as network degrees and word frequencies. With a single parameter, it captures the main feature that the frequencies are linear on the log‐log scale. Nevertheless, there have been criticisms of the power law, for example, that a threshold needs to be preselected without its uncertainty quantified, that the power law is simply inadequate, and that subsequent hypothesis tests are required to determine whether the data could have come from the power law. We propose a modeling framework that combines two different generalizations of the power law, namely the generalized Pareto distribution and the Zipf‐polylog distribution, to resolve these issues. The proposed mixture distributions are shown to fit the data well and quantify the threshold uncertainty in a natural way. A model selection step embedded in the Bayesian inference algorithm further answers the question whether the power law is adequate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistica Neerlandica
Statistica Neerlandica 数学-统计学与概率论
CiteScore
2.60
自引率
6.70%
发文量
26
审稿时长
>12 weeks
期刊介绍: Statistica Neerlandica has been the journal of the Netherlands Society for Statistics and Operations Research since 1946. It covers all areas of statistics, from theoretical to applied, with a special emphasis on mathematical statistics, statistics for the behavioural sciences and biostatistics. This wide scope is reflected by the expertise of the journal’s editors representing these areas. The diverse editorial board is committed to a fast and fair reviewing process, and will judge submissions on quality, correctness, relevance and originality. Statistica Neerlandica encourages transparency and reproducibility, and offers online resources to make data, code, simulation results and other additional materials publicly available.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信