{"title":"基于深度强化学习的多无人机自主竞速方法","authors":"Yu Kang, Jian Di, Ming Li, Yunbo Zhao, Yuhui Wang","doi":"10.1007/s11432-023-4029-9","DOIUrl":null,"url":null,"abstract":"<p>Racing drones have attracted increasing attention due to their remarkable high speed and excellent maneuverability. However, autonomous multi-drone racing is quite difficult since it requires quick and agile flight in intricate surroundings and rich drone interaction. To address these issues, we propose a novel autonomous multi-drone racing method based on deep reinforcement learning. A new set of reward functions is proposed to make racing drones learn the racing skills of human experts. Unlike previous methods that required global information about tracks and track boundary constraints, the proposed method requires only limited localized track information within the range of its own onboard sensors. Further, the dynamic response characteristics of racing drones are incorporated into the training environment, so that the proposed method is more in line with the requirements of real drone racing scenarios. In addition, our method has a low computational cost and can meet the requirements of real-time racing. Finally, the effectiveness and superiority of the proposed method are verified by extensive comparison with the state-of-the-art methods in a series of simulations and real-world experiments.</p>","PeriodicalId":21618,"journal":{"name":"Science China Information Sciences","volume":"104 1","pages":""},"PeriodicalIF":7.3000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous multi-drone racing method based on deep reinforcement learning\",\"authors\":\"Yu Kang, Jian Di, Ming Li, Yunbo Zhao, Yuhui Wang\",\"doi\":\"10.1007/s11432-023-4029-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Racing drones have attracted increasing attention due to their remarkable high speed and excellent maneuverability. However, autonomous multi-drone racing is quite difficult since it requires quick and agile flight in intricate surroundings and rich drone interaction. To address these issues, we propose a novel autonomous multi-drone racing method based on deep reinforcement learning. A new set of reward functions is proposed to make racing drones learn the racing skills of human experts. Unlike previous methods that required global information about tracks and track boundary constraints, the proposed method requires only limited localized track information within the range of its own onboard sensors. Further, the dynamic response characteristics of racing drones are incorporated into the training environment, so that the proposed method is more in line with the requirements of real drone racing scenarios. In addition, our method has a low computational cost and can meet the requirements of real-time racing. Finally, the effectiveness and superiority of the proposed method are verified by extensive comparison with the state-of-the-art methods in a series of simulations and real-world experiments.</p>\",\"PeriodicalId\":21618,\"journal\":{\"name\":\"Science China Information Sciences\",\"volume\":\"104 1\",\"pages\":\"\"},\"PeriodicalIF\":7.3000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science China Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11432-023-4029-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science China Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11432-023-4029-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Autonomous multi-drone racing method based on deep reinforcement learning
Racing drones have attracted increasing attention due to their remarkable high speed and excellent maneuverability. However, autonomous multi-drone racing is quite difficult since it requires quick and agile flight in intricate surroundings and rich drone interaction. To address these issues, we propose a novel autonomous multi-drone racing method based on deep reinforcement learning. A new set of reward functions is proposed to make racing drones learn the racing skills of human experts. Unlike previous methods that required global information about tracks and track boundary constraints, the proposed method requires only limited localized track information within the range of its own onboard sensors. Further, the dynamic response characteristics of racing drones are incorporated into the training environment, so that the proposed method is more in line with the requirements of real drone racing scenarios. In addition, our method has a low computational cost and can meet the requirements of real-time racing. Finally, the effectiveness and superiority of the proposed method are verified by extensive comparison with the state-of-the-art methods in a series of simulations and real-world experiments.
期刊介绍:
Science China Information Sciences is a dedicated journal that showcases high-quality, original research across various domains of information sciences. It encompasses Computer Science & Technologies, Control Science & Engineering, Information & Communication Engineering, Microelectronics & Solid-State Electronics, and Quantum Information, providing a platform for the dissemination of significant contributions in these fields.