萨德规则卡诺群上的曲率指数和测地维度

IF 0.9 3区 数学 Q2 MATHEMATICS
Sebastiano Nicolussi Golo, Ye Zhang
{"title":"萨德规则卡诺群上的曲率指数和测地维度","authors":"Sebastiano Nicolussi Golo, Ye Zhang","doi":"10.1515/agms-2024-0004","DOIUrl":null,"url":null,"abstract":"In this study, we characterize the geodesic dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2024-0004_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"normal\">GEO</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{N}_{{\\rm{GEO}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and give a new lower bound to the curvature exponent <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2024-0004_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"normal\">CE</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{N}_{{\\rm{CE}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on Sard-regular Carnot groups. As an application, we give an example of step-two Carnot group on which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_agms-2024-0004_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"normal\">CE</m:mi> </m:mrow> </m:msub> <m:mo>&gt;</m:mo> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\"normal\">GEO</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{N}_{{\\rm{CE}}}\\gt {N}_{{\\rm{GEO}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>; this answers a question posed by Rizzi (<jats:italic>Measure contraction properties of Carnot groups</jats:italic>. Calc. Var. Partial Differential Equations 55 (2016), no. 3, Art. 60, 20).","PeriodicalId":48637,"journal":{"name":"Analysis and Geometry in Metric Spaces","volume":"13 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Curvature exponent and geodesic dimension on Sard-regular Carnot groups\",\"authors\":\"Sebastiano Nicolussi Golo, Ye Zhang\",\"doi\":\"10.1515/agms-2024-0004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, we characterize the geodesic dimension <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2024-0004_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"normal\\\">GEO</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{N}_{{\\\\rm{GEO}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> and give a new lower bound to the curvature exponent <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2024-0004_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"normal\\\">CE</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{N}_{{\\\\rm{CE}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula> on Sard-regular Carnot groups. As an application, we give an example of step-two Carnot group on which <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_agms-2024-0004_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"normal\\\">CE</m:mi> </m:mrow> </m:msub> <m:mo>&gt;</m:mo> <m:msub> <m:mrow> <m:mi>N</m:mi> </m:mrow> <m:mrow> <m:mi mathvariant=\\\"normal\\\">GEO</m:mi> </m:mrow> </m:msub> </m:math> <jats:tex-math>{N}_{{\\\\rm{CE}}}\\\\gt {N}_{{\\\\rm{GEO}}}</jats:tex-math> </jats:alternatives> </jats:inline-formula>; this answers a question posed by Rizzi (<jats:italic>Measure contraction properties of Carnot groups</jats:italic>. Calc. Var. Partial Differential Equations 55 (2016), no. 3, Art. 60, 20).\",\"PeriodicalId\":48637,\"journal\":{\"name\":\"Analysis and Geometry in Metric Spaces\",\"volume\":\"13 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Analysis and Geometry in Metric Spaces\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/agms-2024-0004\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Geometry in Metric Spaces","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/agms-2024-0004","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们描述了测地维 N GEO {N}_{\rm{GEO}} 的特征,并给出了沙特规则卡诺群上曲率指数 N CE {N}_{\rm{CE}} 的新下限。作为应用,我们给出了一个阶二卡诺群的例子,其中 N CE > N GEO {N}_{{\rm{CE}}}\gt {N}_{{\rm{GEO}}} ;这回答了里齐提出的一个问题(卡诺群的度量收缩性质.Calc.Calc.Partial Differential Equations 55 (2016), no.3, Art.60, 20).
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Curvature exponent and geodesic dimension on Sard-regular Carnot groups
In this study, we characterize the geodesic dimension N GEO {N}_{{\rm{GEO}}} and give a new lower bound to the curvature exponent N CE {N}_{{\rm{CE}}} on Sard-regular Carnot groups. As an application, we give an example of step-two Carnot group on which N CE > N GEO {N}_{{\rm{CE}}}\gt {N}_{{\rm{GEO}}} ; this answers a question posed by Rizzi (Measure contraction properties of Carnot groups. Calc. Var. Partial Differential Equations 55 (2016), no. 3, Art. 60, 20).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Analysis and Geometry in Metric Spaces
Analysis and Geometry in Metric Spaces Mathematics-Geometry and Topology
CiteScore
1.80
自引率
0.00%
发文量
8
审稿时长
16 weeks
期刊介绍: Analysis and Geometry in Metric Spaces is an open access electronic journal that publishes cutting-edge research on analytical and geometrical problems in metric spaces and applications. We strive to present a forum where all aspects of these problems can be discussed. AGMS is devoted to the publication of results on these and related topics: Geometric inequalities in metric spaces, Geometric measure theory and variational problems in metric spaces, Analytic and geometric problems in metric measure spaces, probability spaces, and manifolds with density, Analytic and geometric problems in sub-riemannian manifolds, Carnot groups, and pseudo-hermitian manifolds. Geometric control theory, Curvature in metric and length spaces, Geometric group theory, Harmonic Analysis. Potential theory, Mass transportation problems, Quasiconformal and quasiregular mappings. Quasiconformal geometry, PDEs associated to analytic and geometric problems in metric spaces.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信