{"title":"基于信道选择的时态卷积网络用于特定患者癫痫发作检测","authors":"Guangming Wang;Xiyuan Lei;Wen Li;Won Hee Lee;Lianchi Huang;Jialin Zhu;Shanshan Jia;Dong Wang;Yang Zheng;Hua Zhang;Badong Chen;Gang Wang","doi":"10.1109/TCDS.2024.3433551","DOIUrl":null,"url":null,"abstract":"Since sudden and recurrent epileptic seizures seriously affect people's lives, computer-aided automatic seizure detection is crucial for precise diagnosis and prompt treatment. A novel seizure detection algorithm named channel selection-based temporal convolutional network (CS-TCN) was proposed in this article. First, electroencephalogram (EEG) recordings were segmented into 2-s intervals and features were extracted from both the time and frequency domains. Then, the expanded fisher score channel selection method was employed to select channels that contribute the most to seizure detection. Finally, the features from selected EEG channels were fed into the TCN to capture inherent temporal dependencies of EEG signals and detect seizure events. Children Hospital Boston and Massachusetts Institute of Technology (CHB-MIT) and Siena datasets were used to verify the detection performance of the CS-TCN algorithm, achieving sensitivities of 98.56% and 98.88%, and specificities of 99.80% and 99.88% in samplewise analysis, respectively. In eventwise analysis, the algorithm achieved sensitivities of 97.57% and 95.00%, with delays of 6.91 and 18.62 s, and FDR/h of 0.11 and 0.39, respectively. These results surpassed state-of-the-art few-channel algorithms for both datasets. CS-TCN algorithm offers excellent performance while simplifying model complexity and computational requirements, thus showcasing its potential for facilitating seizure detection in home environments.","PeriodicalId":54300,"journal":{"name":"IEEE Transactions on Cognitive and Developmental Systems","volume":"17 1","pages":"179-188"},"PeriodicalIF":5.0000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Channel-Selection-Based Temporal Convolutional Network for Patient-Specific Epileptic Seizure Detection\",\"authors\":\"Guangming Wang;Xiyuan Lei;Wen Li;Won Hee Lee;Lianchi Huang;Jialin Zhu;Shanshan Jia;Dong Wang;Yang Zheng;Hua Zhang;Badong Chen;Gang Wang\",\"doi\":\"10.1109/TCDS.2024.3433551\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Since sudden and recurrent epileptic seizures seriously affect people's lives, computer-aided automatic seizure detection is crucial for precise diagnosis and prompt treatment. A novel seizure detection algorithm named channel selection-based temporal convolutional network (CS-TCN) was proposed in this article. First, electroencephalogram (EEG) recordings were segmented into 2-s intervals and features were extracted from both the time and frequency domains. Then, the expanded fisher score channel selection method was employed to select channels that contribute the most to seizure detection. Finally, the features from selected EEG channels were fed into the TCN to capture inherent temporal dependencies of EEG signals and detect seizure events. Children Hospital Boston and Massachusetts Institute of Technology (CHB-MIT) and Siena datasets were used to verify the detection performance of the CS-TCN algorithm, achieving sensitivities of 98.56% and 98.88%, and specificities of 99.80% and 99.88% in samplewise analysis, respectively. In eventwise analysis, the algorithm achieved sensitivities of 97.57% and 95.00%, with delays of 6.91 and 18.62 s, and FDR/h of 0.11 and 0.39, respectively. These results surpassed state-of-the-art few-channel algorithms for both datasets. CS-TCN algorithm offers excellent performance while simplifying model complexity and computational requirements, thus showcasing its potential for facilitating seizure detection in home environments.\",\"PeriodicalId\":54300,\"journal\":{\"name\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"volume\":\"17 1\",\"pages\":\"179-188\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Cognitive and Developmental Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10609741/\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Cognitive and Developmental Systems","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10609741/","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Channel-Selection-Based Temporal Convolutional Network for Patient-Specific Epileptic Seizure Detection
Since sudden and recurrent epileptic seizures seriously affect people's lives, computer-aided automatic seizure detection is crucial for precise diagnosis and prompt treatment. A novel seizure detection algorithm named channel selection-based temporal convolutional network (CS-TCN) was proposed in this article. First, electroencephalogram (EEG) recordings were segmented into 2-s intervals and features were extracted from both the time and frequency domains. Then, the expanded fisher score channel selection method was employed to select channels that contribute the most to seizure detection. Finally, the features from selected EEG channels were fed into the TCN to capture inherent temporal dependencies of EEG signals and detect seizure events. Children Hospital Boston and Massachusetts Institute of Technology (CHB-MIT) and Siena datasets were used to verify the detection performance of the CS-TCN algorithm, achieving sensitivities of 98.56% and 98.88%, and specificities of 99.80% and 99.88% in samplewise analysis, respectively. In eventwise analysis, the algorithm achieved sensitivities of 97.57% and 95.00%, with delays of 6.91 and 18.62 s, and FDR/h of 0.11 and 0.39, respectively. These results surpassed state-of-the-art few-channel algorithms for both datasets. CS-TCN algorithm offers excellent performance while simplifying model complexity and computational requirements, thus showcasing its potential for facilitating seizure detection in home environments.
期刊介绍:
The IEEE Transactions on Cognitive and Developmental Systems (TCDS) focuses on advances in the study of development and cognition in natural (humans, animals) and artificial (robots, agents) systems. It welcomes contributions from multiple related disciplines including cognitive systems, cognitive robotics, developmental and epigenetic robotics, autonomous and evolutionary robotics, social structures, multi-agent and artificial life systems, computational neuroscience, and developmental psychology. Articles on theoretical, computational, application-oriented, and experimental studies as well as reviews in these areas are considered.