Zechuan Cui, Jiangping Tian, Xiaolei Zhang, Mingyuan Ye, Kaile Wei, Peng Wang, Song Shi
{"title":"对先导柴油点燃甲烷/空气混合物的单区和多区火焰传播及燃烧特性的光学研究","authors":"Zechuan Cui, Jiangping Tian, Xiaolei Zhang, Mingyuan Ye, Kaile Wei, Peng Wang, Song Shi","doi":"10.1177/09544070241256714","DOIUrl":null,"url":null,"abstract":"The combustion characteristics of lean methane/air mixtures ignited by single and multiple diesel sprays were investigated using an optical RCEM test bench. The experimental approach included flame natural luminescence photography, pressure data acquisition, and heat release analysis. The results revealed that the relationships of ignition delay and orifice diameter varied under single diesel and dual fuel combustion mode. Under dual fuel mode, increasing the orifice diameter of the single-orifice nozzle resulted in a reduction in ignition delay, an acceleration in flame propagation, and an increase in the heat release rate. Increasing the number of orifices multiplied the flame regions, expanded the flame propagation pathways, and enhanced the promoting effect between the flames, resulting in faster flame propagation and increased heat release. The orifice axis angle significantly affected the ignition position and flame propagation direction. An appropriate axis angle would shorten the flame propagation distance, optimize the flame propagation direction and mitigate the impediment effect between flames.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optical study on the single and multiple regions of flame propagation and combustion characteristics of methane/air mixture ignited by pilot diesel\",\"authors\":\"Zechuan Cui, Jiangping Tian, Xiaolei Zhang, Mingyuan Ye, Kaile Wei, Peng Wang, Song Shi\",\"doi\":\"10.1177/09544070241256714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The combustion characteristics of lean methane/air mixtures ignited by single and multiple diesel sprays were investigated using an optical RCEM test bench. The experimental approach included flame natural luminescence photography, pressure data acquisition, and heat release analysis. The results revealed that the relationships of ignition delay and orifice diameter varied under single diesel and dual fuel combustion mode. Under dual fuel mode, increasing the orifice diameter of the single-orifice nozzle resulted in a reduction in ignition delay, an acceleration in flame propagation, and an increase in the heat release rate. Increasing the number of orifices multiplied the flame regions, expanded the flame propagation pathways, and enhanced the promoting effect between the flames, resulting in faster flame propagation and increased heat release. The orifice axis angle significantly affected the ignition position and flame propagation direction. An appropriate axis angle would shorten the flame propagation distance, optimize the flame propagation direction and mitigate the impediment effect between flames.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241256714\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241256714","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Optical study on the single and multiple regions of flame propagation and combustion characteristics of methane/air mixture ignited by pilot diesel
The combustion characteristics of lean methane/air mixtures ignited by single and multiple diesel sprays were investigated using an optical RCEM test bench. The experimental approach included flame natural luminescence photography, pressure data acquisition, and heat release analysis. The results revealed that the relationships of ignition delay and orifice diameter varied under single diesel and dual fuel combustion mode. Under dual fuel mode, increasing the orifice diameter of the single-orifice nozzle resulted in a reduction in ignition delay, an acceleration in flame propagation, and an increase in the heat release rate. Increasing the number of orifices multiplied the flame regions, expanded the flame propagation pathways, and enhanced the promoting effect between the flames, resulting in faster flame propagation and increased heat release. The orifice axis angle significantly affected the ignition position and flame propagation direction. An appropriate axis angle would shorten the flame propagation distance, optimize the flame propagation direction and mitigate the impediment effect between flames.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.