{"title":"自动驾驶车辆的交互式决策:具有态势感知能力的分层博弈论框架","authors":"Junwu Zhao, Ting Qu, Yunfeng Hu","doi":"10.1177/09544070241252480","DOIUrl":null,"url":null,"abstract":"With the development of autonomous driving, future traffic will be composed of various participants. Integrating autonomous vehicles into the traffic flow composed of various types of traffic participants and minimizing conflicts between them is a critical research issue. Thus, this study presents a layered game-theoretic decision-making framework with situational awareness for autonomous vehicles, enabling adaptive decisions for autonomous vehicles in scenarios with multiple traffic participants of different driving characteristics. This paper’s situational awareness layer recognizes multiple participants’ politeness levels through their behavior and spatiotemporal relationships, allowing for a quantitative evaluation of their driving characteristics. The decision-making layer, built on Stackelberg game, adjusts the estimated cost of other traffic participants based on recognized politeness levels. The predictions of optimal behavior for traffic participants are obtained by minimizing the cost, according to which the optimal decision for the ego vehicle can be obtained. Besides, a set of parameters is used to construct the optimization problem as a convex optimization problem, so that the uniqueness of leader’s prediction of follower’s optimal action in each game can be guaranteed. To verify the feasibility and effectiveness, a trajectory planning layer for the autonomous vehicle is designed, the geometric safety constraint consists of planned trajectory and predicted trajectory of traffic participants are built to prevent collisions. Results indicate that the proposed framework can achieve balanced performance when interacting with traffic participants of different politeness levels.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interactive decision-making for autonomous vehicles: A layered game-theoretic framework with situational awareness\",\"authors\":\"Junwu Zhao, Ting Qu, Yunfeng Hu\",\"doi\":\"10.1177/09544070241252480\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the development of autonomous driving, future traffic will be composed of various participants. Integrating autonomous vehicles into the traffic flow composed of various types of traffic participants and minimizing conflicts between them is a critical research issue. Thus, this study presents a layered game-theoretic decision-making framework with situational awareness for autonomous vehicles, enabling adaptive decisions for autonomous vehicles in scenarios with multiple traffic participants of different driving characteristics. This paper’s situational awareness layer recognizes multiple participants’ politeness levels through their behavior and spatiotemporal relationships, allowing for a quantitative evaluation of their driving characteristics. The decision-making layer, built on Stackelberg game, adjusts the estimated cost of other traffic participants based on recognized politeness levels. The predictions of optimal behavior for traffic participants are obtained by minimizing the cost, according to which the optimal decision for the ego vehicle can be obtained. Besides, a set of parameters is used to construct the optimization problem as a convex optimization problem, so that the uniqueness of leader’s prediction of follower’s optimal action in each game can be guaranteed. To verify the feasibility and effectiveness, a trajectory planning layer for the autonomous vehicle is designed, the geometric safety constraint consists of planned trajectory and predicted trajectory of traffic participants are built to prevent collisions. Results indicate that the proposed framework can achieve balanced performance when interacting with traffic participants of different politeness levels.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241252480\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241252480","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Interactive decision-making for autonomous vehicles: A layered game-theoretic framework with situational awareness
With the development of autonomous driving, future traffic will be composed of various participants. Integrating autonomous vehicles into the traffic flow composed of various types of traffic participants and minimizing conflicts between them is a critical research issue. Thus, this study presents a layered game-theoretic decision-making framework with situational awareness for autonomous vehicles, enabling adaptive decisions for autonomous vehicles in scenarios with multiple traffic participants of different driving characteristics. This paper’s situational awareness layer recognizes multiple participants’ politeness levels through their behavior and spatiotemporal relationships, allowing for a quantitative evaluation of their driving characteristics. The decision-making layer, built on Stackelberg game, adjusts the estimated cost of other traffic participants based on recognized politeness levels. The predictions of optimal behavior for traffic participants are obtained by minimizing the cost, according to which the optimal decision for the ego vehicle can be obtained. Besides, a set of parameters is used to construct the optimization problem as a convex optimization problem, so that the uniqueness of leader’s prediction of follower’s optimal action in each game can be guaranteed. To verify the feasibility and effectiveness, a trajectory planning layer for the autonomous vehicle is designed, the geometric safety constraint consists of planned trajectory and predicted trajectory of traffic participants are built to prevent collisions. Results indicate that the proposed framework can achieve balanced performance when interacting with traffic participants of different politeness levels.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.