Jinyi Liu, Fushan Yan, He Dong, Lirong Fu, Ying Zhao
{"title":"乡村道路区域的全局和局部综合动态路径规划算法","authors":"Jinyi Liu, Fushan Yan, He Dong, Lirong Fu, Ying Zhao","doi":"10.1177/09544070241263888","DOIUrl":null,"url":null,"abstract":"In China, the village roads are characterized by numerous intersections and significant differences in road widths, creating a complex maze-like terrain. This undoubtedly increases the difficulty of path planning for autonomous vehicles. This study proposes an improved bidirectional RRT* algorithm that utilizes the advantages of the rapid random search of the RRT* algorithm. It introduces virtual points to address the irregularity of road networks and creates enveloping circles at expanding nodes to enhance path reachability, thus obtaining the optimal global planning path. To enhance path tracking comfort, a fifth-order B-spline curve is utilized to smooth the global path, and local path planning is performed using Quadratic Programming (QP). The proposed combined global and local path planning method was evaluated through Co-simulation experiments basing on the Matlab/CarSim/PreScan platform. Simulation results demonstrate that the enhanced RRT* algorithm outperforms the traditional RRT* algorithm in the same scenario. Specifically, the improved algorithm reduces the running time by 29.56%, increases node utilization by approximately 15.33%, and decreases the planned path length by 2.8%. Additionally, the vehicle’s final lateral tracking error was controlled within 0–0.04 m, and the longitudinal tracking error was controlled within 0–0.1 m, fully demonstrating the vehicle’s excellent path-tracking performance. The study’s innovative ideas will offer methodological support for researching path planning for autonomous vehicles in specific scenarios.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A global and local integrated dynamic path planning algorithm for village roads region\",\"authors\":\"Jinyi Liu, Fushan Yan, He Dong, Lirong Fu, Ying Zhao\",\"doi\":\"10.1177/09544070241263888\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In China, the village roads are characterized by numerous intersections and significant differences in road widths, creating a complex maze-like terrain. This undoubtedly increases the difficulty of path planning for autonomous vehicles. This study proposes an improved bidirectional RRT* algorithm that utilizes the advantages of the rapid random search of the RRT* algorithm. It introduces virtual points to address the irregularity of road networks and creates enveloping circles at expanding nodes to enhance path reachability, thus obtaining the optimal global planning path. To enhance path tracking comfort, a fifth-order B-spline curve is utilized to smooth the global path, and local path planning is performed using Quadratic Programming (QP). The proposed combined global and local path planning method was evaluated through Co-simulation experiments basing on the Matlab/CarSim/PreScan platform. Simulation results demonstrate that the enhanced RRT* algorithm outperforms the traditional RRT* algorithm in the same scenario. Specifically, the improved algorithm reduces the running time by 29.56%, increases node utilization by approximately 15.33%, and decreases the planned path length by 2.8%. Additionally, the vehicle’s final lateral tracking error was controlled within 0–0.04 m, and the longitudinal tracking error was controlled within 0–0.1 m, fully demonstrating the vehicle’s excellent path-tracking performance. The study’s innovative ideas will offer methodological support for researching path planning for autonomous vehicles in specific scenarios.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241263888\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241263888","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
A global and local integrated dynamic path planning algorithm for village roads region
In China, the village roads are characterized by numerous intersections and significant differences in road widths, creating a complex maze-like terrain. This undoubtedly increases the difficulty of path planning for autonomous vehicles. This study proposes an improved bidirectional RRT* algorithm that utilizes the advantages of the rapid random search of the RRT* algorithm. It introduces virtual points to address the irregularity of road networks and creates enveloping circles at expanding nodes to enhance path reachability, thus obtaining the optimal global planning path. To enhance path tracking comfort, a fifth-order B-spline curve is utilized to smooth the global path, and local path planning is performed using Quadratic Programming (QP). The proposed combined global and local path planning method was evaluated through Co-simulation experiments basing on the Matlab/CarSim/PreScan platform. Simulation results demonstrate that the enhanced RRT* algorithm outperforms the traditional RRT* algorithm in the same scenario. Specifically, the improved algorithm reduces the running time by 29.56%, increases node utilization by approximately 15.33%, and decreases the planned path length by 2.8%. Additionally, the vehicle’s final lateral tracking error was controlled within 0–0.04 m, and the longitudinal tracking error was controlled within 0–0.1 m, fully demonstrating the vehicle’s excellent path-tracking performance. The study’s innovative ideas will offer methodological support for researching path planning for autonomous vehicles in specific scenarios.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.