{"title":"基于 QBP-PID 的四分之一汽车主动悬架控制仿真分析","authors":"Yunshi Wu, Donghai Su","doi":"10.1177/09544070241265152","DOIUrl":null,"url":null,"abstract":"In order to further improve the stability and comfort of automobile active suspension, a BP neural network controller based on Q-learning algorithm optimization (QBP-PID) is proposed. QBP-PID uses BP neural network to adjust the PID gain, introduces the optimal strategy of Q-learning to correct the weight momentum factor, and optimizes the key weights in the neural network, so that the controller has better learning ability and online correction ability. A quarter suspension simulation model with random road excitation as the system input is established in Simulink software. The root mean square of body acceleration and tire dynamic displacement are used as the evaluation indexes of active suspension performance. The simulation results show that compared with the traditional passive suspension, PID control suspension and BP-PID control suspension, the active suspension using QBP-PID control algorithm can significantly improve the driving stability and comfort of the vehicle.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation analysis of quarter car active suspension control based on QBP-PID\",\"authors\":\"Yunshi Wu, Donghai Su\",\"doi\":\"10.1177/09544070241265152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to further improve the stability and comfort of automobile active suspension, a BP neural network controller based on Q-learning algorithm optimization (QBP-PID) is proposed. QBP-PID uses BP neural network to adjust the PID gain, introduces the optimal strategy of Q-learning to correct the weight momentum factor, and optimizes the key weights in the neural network, so that the controller has better learning ability and online correction ability. A quarter suspension simulation model with random road excitation as the system input is established in Simulink software. The root mean square of body acceleration and tire dynamic displacement are used as the evaluation indexes of active suspension performance. The simulation results show that compared with the traditional passive suspension, PID control suspension and BP-PID control suspension, the active suspension using QBP-PID control algorithm can significantly improve the driving stability and comfort of the vehicle.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241265152\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241265152","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
为了进一步提高汽车主动悬架的稳定性和舒适性,提出了一种基于 Q-learning 算法优化的 BP 神经网络控制器(QBP-PID)。QBP-PID 利用 BP 神经网络调节 PID 增益,引入 Q-learning 的最优策略修正权重动量因子,优化神经网络中的关键权重,使控制器具有更好的学习能力和在线修正能力。在 Simulink 软件中建立了以随机路面激励为系统输入的四分之一悬架仿真模型。以车身加速度均方根和轮胎动态位移作为主动悬架性能的评价指标。仿真结果表明,与传统的被动悬架、PID 控制悬架和 BP-PID 控制悬架相比,采用 QBP-PID 控制算法的主动悬架能显著提高车辆的行驶稳定性和舒适性。
Simulation analysis of quarter car active suspension control based on QBP-PID
In order to further improve the stability and comfort of automobile active suspension, a BP neural network controller based on Q-learning algorithm optimization (QBP-PID) is proposed. QBP-PID uses BP neural network to adjust the PID gain, introduces the optimal strategy of Q-learning to correct the weight momentum factor, and optimizes the key weights in the neural network, so that the controller has better learning ability and online correction ability. A quarter suspension simulation model with random road excitation as the system input is established in Simulink software. The root mean square of body acceleration and tire dynamic displacement are used as the evaluation indexes of active suspension performance. The simulation results show that compared with the traditional passive suspension, PID control suspension and BP-PID control suspension, the active suspension using QBP-PID control algorithm can significantly improve the driving stability and comfort of the vehicle.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.