基于强化学习的主动悬挂系统自适应内分泌 PID 控制

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Nan Li, Yan Shi
{"title":"基于强化学习的主动悬挂系统自适应内分泌 PID 控制","authors":"Nan Li, Yan Shi","doi":"10.1177/09544070241262354","DOIUrl":null,"url":null,"abstract":"Recent research has focused on active suspension systems because of their real-time ability to adapt to a variety of road surfaces, external perturbations, and potential to control the smoothness of vehicles. Since the parameters of conventional PID controllers used for active suspension control have limitations due to their inability to adapt to external changes, the fuzzy PID controllers are developed to overcome such limitations. However, fuzzy control have certain disadvantages related to the manual definition of fuzzy rules and variables. In this paper, a first step in improving the robustness of the PID control is to use the endocrine framework, which is considered to be highly nonlinear and complex in the vehicle suspension system. A deep reinforcement learning algorithm is then used to train the intelligence to provide an efficient strategy for adaptive gain adjustment for the endocrine PID, which requires no prior knowledge of active suspension control. The dynamics of the whole vehicle are modeled using ADAMS to analyze the dynamic characteristics of the vehicle at different speeds and road surfaces. The results show that the active suspension based on deep reinforcement learning controlling reduces vertical acceleration of the body more effectively and improves ride comfort more efficiently without sacrificing dynamic suspension deflection or dynamic tire load as compared with passive suspension or fuzzy PID suspensions. Further, the controller performs well under conditions such as changing road grades and vehicle speeds, indicating a good generalization.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Adaptive endocrine PID control for active suspension based on reinforcement learning\",\"authors\":\"Nan Li, Yan Shi\",\"doi\":\"10.1177/09544070241262354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent research has focused on active suspension systems because of their real-time ability to adapt to a variety of road surfaces, external perturbations, and potential to control the smoothness of vehicles. Since the parameters of conventional PID controllers used for active suspension control have limitations due to their inability to adapt to external changes, the fuzzy PID controllers are developed to overcome such limitations. However, fuzzy control have certain disadvantages related to the manual definition of fuzzy rules and variables. In this paper, a first step in improving the robustness of the PID control is to use the endocrine framework, which is considered to be highly nonlinear and complex in the vehicle suspension system. A deep reinforcement learning algorithm is then used to train the intelligence to provide an efficient strategy for adaptive gain adjustment for the endocrine PID, which requires no prior knowledge of active suspension control. The dynamics of the whole vehicle are modeled using ADAMS to analyze the dynamic characteristics of the vehicle at different speeds and road surfaces. The results show that the active suspension based on deep reinforcement learning controlling reduces vertical acceleration of the body more effectively and improves ride comfort more efficiently without sacrificing dynamic suspension deflection or dynamic tire load as compared with passive suspension or fuzzy PID suspensions. Further, the controller performs well under conditions such as changing road grades and vehicle speeds, indicating a good generalization.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/09544070241262354\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/09544070241262354","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

由于主动悬架系统能够实时适应各种路面和外部扰动,并具有控制车辆平稳性的潜力,因此近期的研究重点集中在主动悬架系统上。由于用于主动悬架控制的传统 PID 控制器的参数无法适应外部变化,因此存在一定的局限性,为了克服这些局限性,人们开发了模糊 PID 控制器。然而,模糊控制存在一些缺点,即需要手动定义模糊规则和变量。在本文中,提高 PID 控制鲁棒性的第一步是使用内分泌框架,该框架被认为在车辆悬架系统中具有高度的非线性和复杂性。然后使用深度强化学习算法来训练智能,为内分泌 PID 提供高效的自适应增益调整策略,而这并不需要主动悬架控制方面的先验知识。使用 ADAMS 对整车的动力学进行建模,分析车辆在不同速度和路面下的动态特性。结果表明,与被动悬架或模糊 PID 悬挂相比,基于深度强化学习控制的主动悬架能更有效地降低车身的垂直加速度,并在不牺牲动态悬架挠度或动态轮胎载荷的情况下更有效地提高乘坐舒适性。此外,该控制器在道路坡度和车速变化等条件下表现良好,表明其具有良好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Adaptive endocrine PID control for active suspension based on reinforcement learning
Recent research has focused on active suspension systems because of their real-time ability to adapt to a variety of road surfaces, external perturbations, and potential to control the smoothness of vehicles. Since the parameters of conventional PID controllers used for active suspension control have limitations due to their inability to adapt to external changes, the fuzzy PID controllers are developed to overcome such limitations. However, fuzzy control have certain disadvantages related to the manual definition of fuzzy rules and variables. In this paper, a first step in improving the robustness of the PID control is to use the endocrine framework, which is considered to be highly nonlinear and complex in the vehicle suspension system. A deep reinforcement learning algorithm is then used to train the intelligence to provide an efficient strategy for adaptive gain adjustment for the endocrine PID, which requires no prior knowledge of active suspension control. The dynamics of the whole vehicle are modeled using ADAMS to analyze the dynamic characteristics of the vehicle at different speeds and road surfaces. The results show that the active suspension based on deep reinforcement learning controlling reduces vertical acceleration of the body more effectively and improves ride comfort more efficiently without sacrificing dynamic suspension deflection or dynamic tire load as compared with passive suspension or fuzzy PID suspensions. Further, the controller performs well under conditions such as changing road grades and vehicle speeds, indicating a good generalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信