{"title":"倾斜导电柱效应:磁电异常相的一个新的简单模型","authors":"Tomohiro Inoue, Takeshi Hashimoto","doi":"10.1093/gji/ggae252","DOIUrl":null,"url":null,"abstract":"Summary Magnetotelluric data are sometimes accompanied by ‘anomalous’ impedance phases ($\\phi $xy and $\\phi $yx) in the off-diagonal components deviating from the first (0º < $\\phi $xy < 90º) or third (−180º < $\\phi $yx < −90º) quadrant, especially in long-period bands. This phenomenon is called the phases out-of-quadrant (POQ). The POQ poses a challenge in Magnetotelluric modeling because simple one- or two-dimensional models cannot explain it. Previous studies have reported that strong inhomogeneity, anisotropy, or particular three-dimensional structures, such as the L-shaped or cross-shaped conductors, could explain the POQ. Aside from these models, we have discovered that a slanted columnar conductor also generates the POQ. Our systematic investigation through the synthetic forward modeling of an inclined conductive column with a varying geometry showed that the inclination angle and the column length may affect the POQ appearance. We investigated herein the behavior of the electric currents around the inclined conductive column embedded in a resistive half space. We found that the induced electric field in the region with the POQ tends to point in the opposite direction to the surrounding vectors. This result can reasonably explain the inverted phase in long-period bands. Furthermore, we confirmed that current is sucked into one end of the column, but discharged from the other end, suggesting that the column works as a current channel. The localized reverse vectors are associated with the current channeling along the inclined conductor, which generates the POQ. A volcanic conduit within a resistive host rock is one of the typical field examples of such an inclined channel. Our study suggests that the POQ is a helpful clue in imaging the geometry of a volcanic magma plumbing system through Magnetotelluric surveys.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"27 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The inclined conductive column effect: A new simple model for magnetotelluric anomalous phases\",\"authors\":\"Tomohiro Inoue, Takeshi Hashimoto\",\"doi\":\"10.1093/gji/ggae252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Magnetotelluric data are sometimes accompanied by ‘anomalous’ impedance phases ($\\\\phi $xy and $\\\\phi $yx) in the off-diagonal components deviating from the first (0º < $\\\\phi $xy < 90º) or third (−180º < $\\\\phi $yx < −90º) quadrant, especially in long-period bands. This phenomenon is called the phases out-of-quadrant (POQ). The POQ poses a challenge in Magnetotelluric modeling because simple one- or two-dimensional models cannot explain it. Previous studies have reported that strong inhomogeneity, anisotropy, or particular three-dimensional structures, such as the L-shaped or cross-shaped conductors, could explain the POQ. Aside from these models, we have discovered that a slanted columnar conductor also generates the POQ. Our systematic investigation through the synthetic forward modeling of an inclined conductive column with a varying geometry showed that the inclination angle and the column length may affect the POQ appearance. We investigated herein the behavior of the electric currents around the inclined conductive column embedded in a resistive half space. We found that the induced electric field in the region with the POQ tends to point in the opposite direction to the surrounding vectors. This result can reasonably explain the inverted phase in long-period bands. Furthermore, we confirmed that current is sucked into one end of the column, but discharged from the other end, suggesting that the column works as a current channel. The localized reverse vectors are associated with the current channeling along the inclined conductor, which generates the POQ. A volcanic conduit within a resistive host rock is one of the typical field examples of such an inclined channel. Our study suggests that the POQ is a helpful clue in imaging the geometry of a volcanic magma plumbing system through Magnetotelluric surveys.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"27 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae252\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae252","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
The inclined conductive column effect: A new simple model for magnetotelluric anomalous phases
Summary Magnetotelluric data are sometimes accompanied by ‘anomalous’ impedance phases ($\phi $xy and $\phi $yx) in the off-diagonal components deviating from the first (0º < $\phi $xy < 90º) or third (−180º < $\phi $yx < −90º) quadrant, especially in long-period bands. This phenomenon is called the phases out-of-quadrant (POQ). The POQ poses a challenge in Magnetotelluric modeling because simple one- or two-dimensional models cannot explain it. Previous studies have reported that strong inhomogeneity, anisotropy, or particular three-dimensional structures, such as the L-shaped or cross-shaped conductors, could explain the POQ. Aside from these models, we have discovered that a slanted columnar conductor also generates the POQ. Our systematic investigation through the synthetic forward modeling of an inclined conductive column with a varying geometry showed that the inclination angle and the column length may affect the POQ appearance. We investigated herein the behavior of the electric currents around the inclined conductive column embedded in a resistive half space. We found that the induced electric field in the region with the POQ tends to point in the opposite direction to the surrounding vectors. This result can reasonably explain the inverted phase in long-period bands. Furthermore, we confirmed that current is sucked into one end of the column, but discharged from the other end, suggesting that the column works as a current channel. The localized reverse vectors are associated with the current channeling along the inclined conductor, which generates the POQ. A volcanic conduit within a resistive host rock is one of the typical field examples of such an inclined channel. Our study suggests that the POQ is a helpful clue in imaging the geometry of a volcanic magma plumbing system through Magnetotelluric surveys.
期刊介绍:
Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.