A J Girard, J Shragge, M Danilouchkine, C Udengaard, S Gerritsen
{"title":"海底观测:修正场超低频率环境洋底节点地震学","authors":"A J Girard, J Shragge, M Danilouchkine, C Udengaard, S Gerritsen","doi":"10.1093/gji/ggae249","DOIUrl":null,"url":null,"abstract":"Summary Large-scale ocean-bottom node (OBN) arrays of 1000s of multi-component instruments deployed over 1000s of square kilometers have been used successfully for active-source seismic exploration activities including full waveform inversion (FWI) at exploration frequencies above about 2.0 Hz. The analysis of concurrently recorded lower-frequency ambient wavefield data, though, is only just beginning. A key long-term objective of such ambient wavefield analyses is to exploit the sensitivity of sub-2.0 Hz energy to build long-wavelength initial elastic models, thus facilitating FWI applications. However, doing so requires a more detailed understanding of ambient wavefield information recorded on the seafloor, the types, frequency structure and effective source distribution of recorded surface-wave modes, the near-seafloor elastic model structure, and the sensitivity of recorded wave modes to subsurface model structure. To this end, we present a wavefield analysis of low- and ultra-low-frequency ambient data (defined as <1.0 Hz and <0.1 Hz, respectively) acquired on 2712 OBN stations in the Amendment Phase 1 survey covering 2750 km2 of the Gulf of Mexico. After applying ambient data conditioning prior to cross-correlation and seismic cross-coherence interferometry workflows, we demonstrate that the resulting virtual shot gather (VSG) volumes contain evidence for surface-wave and guided P-wave mode propagation between the 0.01-1.0 Hz that remains coherent to distances of at least 80 km. Evidence for surface-wave scattering from near-surface salt-body structure between 0.35-0.85 Hz is also present in a wide spatial distribution of VSG data. Finally, the interferometric VSG volumes clearly show waveform repetition at 20 s intervals in sub-0.3 Hz surface-wave arrivals, a periodicity consistent with the mean active-source shot interval. This suggests that the dominant contribution of surface-wave energy acquired in this VSG frequency band is likely predominantly related to air-gun excitation rather than by naturally occurring energy sources. Overall, these observations may have important consequences for the early stages of initial model building for elastic FWI analysis.","PeriodicalId":12519,"journal":{"name":"Geophysical Journal International","volume":"46 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Observations from the Seafloor: Ultra-low-frequency ambient ocean-bottom nodal seismology at the amendment field\",\"authors\":\"A J Girard, J Shragge, M Danilouchkine, C Udengaard, S Gerritsen\",\"doi\":\"10.1093/gji/ggae249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Summary Large-scale ocean-bottom node (OBN) arrays of 1000s of multi-component instruments deployed over 1000s of square kilometers have been used successfully for active-source seismic exploration activities including full waveform inversion (FWI) at exploration frequencies above about 2.0 Hz. The analysis of concurrently recorded lower-frequency ambient wavefield data, though, is only just beginning. A key long-term objective of such ambient wavefield analyses is to exploit the sensitivity of sub-2.0 Hz energy to build long-wavelength initial elastic models, thus facilitating FWI applications. However, doing so requires a more detailed understanding of ambient wavefield information recorded on the seafloor, the types, frequency structure and effective source distribution of recorded surface-wave modes, the near-seafloor elastic model structure, and the sensitivity of recorded wave modes to subsurface model structure. To this end, we present a wavefield analysis of low- and ultra-low-frequency ambient data (defined as <1.0 Hz and <0.1 Hz, respectively) acquired on 2712 OBN stations in the Amendment Phase 1 survey covering 2750 km2 of the Gulf of Mexico. After applying ambient data conditioning prior to cross-correlation and seismic cross-coherence interferometry workflows, we demonstrate that the resulting virtual shot gather (VSG) volumes contain evidence for surface-wave and guided P-wave mode propagation between the 0.01-1.0 Hz that remains coherent to distances of at least 80 km. Evidence for surface-wave scattering from near-surface salt-body structure between 0.35-0.85 Hz is also present in a wide spatial distribution of VSG data. Finally, the interferometric VSG volumes clearly show waveform repetition at 20 s intervals in sub-0.3 Hz surface-wave arrivals, a periodicity consistent with the mean active-source shot interval. This suggests that the dominant contribution of surface-wave energy acquired in this VSG frequency band is likely predominantly related to air-gun excitation rather than by naturally occurring energy sources. Overall, these observations may have important consequences for the early stages of initial model building for elastic FWI analysis.\",\"PeriodicalId\":12519,\"journal\":{\"name\":\"Geophysical Journal International\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geophysical Journal International\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1093/gji/ggae249\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Journal International","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1093/gji/ggae249","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Observations from the Seafloor: Ultra-low-frequency ambient ocean-bottom nodal seismology at the amendment field
Summary Large-scale ocean-bottom node (OBN) arrays of 1000s of multi-component instruments deployed over 1000s of square kilometers have been used successfully for active-source seismic exploration activities including full waveform inversion (FWI) at exploration frequencies above about 2.0 Hz. The analysis of concurrently recorded lower-frequency ambient wavefield data, though, is only just beginning. A key long-term objective of such ambient wavefield analyses is to exploit the sensitivity of sub-2.0 Hz energy to build long-wavelength initial elastic models, thus facilitating FWI applications. However, doing so requires a more detailed understanding of ambient wavefield information recorded on the seafloor, the types, frequency structure and effective source distribution of recorded surface-wave modes, the near-seafloor elastic model structure, and the sensitivity of recorded wave modes to subsurface model structure. To this end, we present a wavefield analysis of low- and ultra-low-frequency ambient data (defined as <1.0 Hz and <0.1 Hz, respectively) acquired on 2712 OBN stations in the Amendment Phase 1 survey covering 2750 km2 of the Gulf of Mexico. After applying ambient data conditioning prior to cross-correlation and seismic cross-coherence interferometry workflows, we demonstrate that the resulting virtual shot gather (VSG) volumes contain evidence for surface-wave and guided P-wave mode propagation between the 0.01-1.0 Hz that remains coherent to distances of at least 80 km. Evidence for surface-wave scattering from near-surface salt-body structure between 0.35-0.85 Hz is also present in a wide spatial distribution of VSG data. Finally, the interferometric VSG volumes clearly show waveform repetition at 20 s intervals in sub-0.3 Hz surface-wave arrivals, a periodicity consistent with the mean active-source shot interval. This suggests that the dominant contribution of surface-wave energy acquired in this VSG frequency band is likely predominantly related to air-gun excitation rather than by naturally occurring energy sources. Overall, these observations may have important consequences for the early stages of initial model building for elastic FWI analysis.
期刊介绍:
Geophysical Journal International publishes top quality research papers, express letters, invited review papers and book reviews on all aspects of theoretical, computational, applied and observational geophysics.