拓扑相位的粗几何方法:来自实空间表示的不变式

Christoph S. Setescak, Caio Lewenkopf, Matthias Ludewig
{"title":"拓扑相位的粗几何方法:来自实空间表示的不变式","authors":"Christoph S. Setescak, Caio Lewenkopf, Matthias Ludewig","doi":"arxiv-2407.16494","DOIUrl":null,"url":null,"abstract":"We show that topological phases include disordered materials if the\nunderlying invariant is interpreted as originating from coarse geometry. This\ncoarse geometric framework, grounded in physical principles, offers a natural\nsetting for the bulk-boundary correspondence, reproduces physical knowledge,\nand leads to an efficient and tractable numerical approach for calculating\ninvariants. As a showcase, we give a detailed discussion of the framework for\nthree-dimensional systems with time-reversal symmetry. We numerically reproduce\nthe known disorder-free phase diagram of a tunable, effective tight-binding\nmodel and analyze the evolution of the topological phase under disorder.","PeriodicalId":501066,"journal":{"name":"arXiv - PHYS - Disordered Systems and Neural Networks","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coarse geometric approach to topological phases: Invariants from real-space representations\",\"authors\":\"Christoph S. Setescak, Caio Lewenkopf, Matthias Ludewig\",\"doi\":\"arxiv-2407.16494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that topological phases include disordered materials if the\\nunderlying invariant is interpreted as originating from coarse geometry. This\\ncoarse geometric framework, grounded in physical principles, offers a natural\\nsetting for the bulk-boundary correspondence, reproduces physical knowledge,\\nand leads to an efficient and tractable numerical approach for calculating\\ninvariants. As a showcase, we give a detailed discussion of the framework for\\nthree-dimensional systems with time-reversal symmetry. We numerically reproduce\\nthe known disorder-free phase diagram of a tunable, effective tight-binding\\nmodel and analyze the evolution of the topological phase under disorder.\",\"PeriodicalId\":501066,\"journal\":{\"name\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"volume\":\"66 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - PHYS - Disordered Systems and Neural Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16494\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Disordered Systems and Neural Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16494","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,如果将基本不变式解释为源于粗几何,拓扑相包括无序材料。这种粗几何框架以物理原理为基础,为体界对应关系提供了一个自然设置,再现了物理知识,并为计算不变式提供了一种高效、可操作的数值方法。作为展示,我们详细讨论了具有时间反转对称性的三维系统的框架。我们用数值方法再现了一个可调有效紧密结合模型的已知无序相图,并分析了无序状态下拓扑相的演化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Coarse geometric approach to topological phases: Invariants from real-space representations
We show that topological phases include disordered materials if the underlying invariant is interpreted as originating from coarse geometry. This coarse geometric framework, grounded in physical principles, offers a natural setting for the bulk-boundary correspondence, reproduces physical knowledge, and leads to an efficient and tractable numerical approach for calculating invariants. As a showcase, we give a detailed discussion of the framework for three-dimensional systems with time-reversal symmetry. We numerically reproduce the known disorder-free phase diagram of a tunable, effective tight-binding model and analyze the evolution of the topological phase under disorder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信