{"title":"$mathrm{C}^*$-actness 和群作用的属性 A","authors":"Hiroto Nishikawa","doi":"arxiv-2407.16130","DOIUrl":null,"url":null,"abstract":"For an action of a discrete group $\\Gamma$ on a set $X$, we show that the\nSchreier graph on $X$ is property A if and only if the permutation\nrepresentation on $\\ell_2X$ generates an exact $\\mathrm{C}^*$-algebra. This is\nwell known in the case of the left regular action on $X=\\Gamma$. This also\ngeneralizes Sako's theorem, which states that exactness of the uniform Roe\nalgebra $\\mathrm{C}^*_{\\mathrm{u}}(X)$ characterizes property A of $X$ when $X$\nis uniformly locally finite.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"$\\\\mathrm{C}^*$-exactness and property A for group actions\",\"authors\":\"Hiroto Nishikawa\",\"doi\":\"arxiv-2407.16130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For an action of a discrete group $\\\\Gamma$ on a set $X$, we show that the\\nSchreier graph on $X$ is property A if and only if the permutation\\nrepresentation on $\\\\ell_2X$ generates an exact $\\\\mathrm{C}^*$-algebra. This is\\nwell known in the case of the left regular action on $X=\\\\Gamma$. This also\\ngeneralizes Sako's theorem, which states that exactness of the uniform Roe\\nalgebra $\\\\mathrm{C}^*_{\\\\mathrm{u}}(X)$ characterizes property A of $X$ when $X$\\nis uniformly locally finite.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.16130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.16130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
$\mathrm{C}^*$-exactness and property A for group actions
For an action of a discrete group $\Gamma$ on a set $X$, we show that the
Schreier graph on $X$ is property A if and only if the permutation
representation on $\ell_2X$ generates an exact $\mathrm{C}^*$-algebra. This is
well known in the case of the left regular action on $X=\Gamma$. This also
generalizes Sako's theorem, which states that exactness of the uniform Roe
algebra $\mathrm{C}^*_{\mathrm{u}}(X)$ characterizes property A of $X$ when $X$
is uniformly locally finite.