自由半群代数的 Hochschild 同调

Linzhe Huang, Minghui Ma, Xiaomin Wei
{"title":"自由半群代数的 Hochschild 同调","authors":"Linzhe Huang, Minghui Ma, Xiaomin Wei","doi":"arxiv-2407.14729","DOIUrl":null,"url":null,"abstract":"This paper focuses on the cohomology of operator algebras associated with the\nfree semigroup generated by the set $\\{z_{\\alpha}\\}_{\\alpha\\in\\Lambda}$, with\nthe left regular free semigroup algebra $\\mathfrak{L}_{\\Lambda}$ and the\nnon-commutative disc algebra $\\mathfrak{A}_{\\Lambda}$ serving as two typical\nexamples. We establish that all derivations of these algebras are automatically\ncontinuous. By introducing a novel computational approach, we demonstrate that\nthe first Hochschild cohomology group of $\\mathfrak{A}_{\\Lambda}$ with\ncoefficients in $\\mathfrak{L}_{\\Lambda}$ is zero. Utilizing the Ces\\`aro\noperators and conditional expectations, we show that the first normal\ncohomology group of $\\mathfrak{L}_{\\Lambda}$ is trivial. Finally, we prove that\nthe higher cohomology groups of the non-commutative disc algebras with\ncoefficients in the complex field vanish when $|\\Lambda|<\\infty$. These methods\nextend to compute the cohomology groups of a specific class of operator\nalgebras generated by the left regular representations of cancellative\nsemigroups, which notably include Thompson's semigroup.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hochschild cohomology for free semigroup algebras\",\"authors\":\"Linzhe Huang, Minghui Ma, Xiaomin Wei\",\"doi\":\"arxiv-2407.14729\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper focuses on the cohomology of operator algebras associated with the\\nfree semigroup generated by the set $\\\\{z_{\\\\alpha}\\\\}_{\\\\alpha\\\\in\\\\Lambda}$, with\\nthe left regular free semigroup algebra $\\\\mathfrak{L}_{\\\\Lambda}$ and the\\nnon-commutative disc algebra $\\\\mathfrak{A}_{\\\\Lambda}$ serving as two typical\\nexamples. We establish that all derivations of these algebras are automatically\\ncontinuous. By introducing a novel computational approach, we demonstrate that\\nthe first Hochschild cohomology group of $\\\\mathfrak{A}_{\\\\Lambda}$ with\\ncoefficients in $\\\\mathfrak{L}_{\\\\Lambda}$ is zero. Utilizing the Ces\\\\`aro\\noperators and conditional expectations, we show that the first normal\\ncohomology group of $\\\\mathfrak{L}_{\\\\Lambda}$ is trivial. Finally, we prove that\\nthe higher cohomology groups of the non-commutative disc algebras with\\ncoefficients in the complex field vanish when $|\\\\Lambda|<\\\\infty$. These methods\\nextend to compute the cohomology groups of a specific class of operator\\nalgebras generated by the left regular representations of cancellative\\nsemigroups, which notably include Thompson's semigroup.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.14729\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.14729","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文主要研究与集合 $\{z_{\alpha}\}_{\alpha\in\Lambda}$ 所产生的自由半群相关的算子代数的同调,其中左正规自由半群代数 $\mathfrak{L}_{\Lambda}$ 和非交换圆盘代数 $\mathfrak{A}_{\Lambda}$ 是两个典型的例子。我们确定这些代数的所有推导都是自动连续的。通过引入一种新颖的计算方法,我们证明了$\mathfrak{A}_{\Lambda}$中系数为$\mathfrak{L}_{\Lambda}$的第一个霍希尔德同调群为零。利用 Ces\`arooperators 和条件期望,我们证明了 $\mathfrak{L}_{\Lambda}$ 的第一法向同调群是微不足道的。最后,我们证明了当$|\Lambda|<\infty$消失时,复域中有系数的非交换圆盘代数的高次同调群也消失了。这些方法可以扩展到计算由可注解半群的左正则表示生成的一类特定算子数组的同调群,其中主要包括汤普森半群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Hochschild cohomology for free semigroup algebras
This paper focuses on the cohomology of operator algebras associated with the free semigroup generated by the set $\{z_{\alpha}\}_{\alpha\in\Lambda}$, with the left regular free semigroup algebra $\mathfrak{L}_{\Lambda}$ and the non-commutative disc algebra $\mathfrak{A}_{\Lambda}$ serving as two typical examples. We establish that all derivations of these algebras are automatically continuous. By introducing a novel computational approach, we demonstrate that the first Hochschild cohomology group of $\mathfrak{A}_{\Lambda}$ with coefficients in $\mathfrak{L}_{\Lambda}$ is zero. Utilizing the Ces\`aro operators and conditional expectations, we show that the first normal cohomology group of $\mathfrak{L}_{\Lambda}$ is trivial. Finally, we prove that the higher cohomology groups of the non-commutative disc algebras with coefficients in the complex field vanish when $|\Lambda|<\infty$. These methods extend to compute the cohomology groups of a specific class of operator algebras generated by the left regular representations of cancellative semigroups, which notably include Thompson's semigroup.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信