全自由积 $C^*$ 算法的轨迹空间

Adrian Ioana, Pieter Spaas, Itamar Vigdorovich
{"title":"全自由积 $C^*$ 算法的轨迹空间","authors":"Adrian Ioana, Pieter Spaas, Itamar Vigdorovich","doi":"arxiv-2407.15985","DOIUrl":null,"url":null,"abstract":"We prove that the space of traces $\\text{T}(A)$ of the unital full free\nproduct $A=A_1*A_2$ of two unital, separable $C^*$-algebras $A_1$ and $A_2$ is\ntypically a Poulsen simplex, i.e., a simplex whose extreme points are dense. We\ndeduce that $\\text{T}(A)$ is a Poulsen simplex whenever $A_1$ and $A_2$ have no\n$1$-dimensional representations, e.g., if $A_1$ and $A_2$ are finite\ndimensional with no $1$-dimensional direct summands. Additionally, we\ncharacterize when the space of traces of a free product of two countable groups\nis a Poulsen simplex. Our main technical contribution is a new perturbation\nresult for pairs of von Neumann subalgebras $(M_1,M_2)$ of a tracial von\nNeumann algebra $M$ which gives necessary conditions ensuring that $M_1$ and a\nsmall unitary perturbation of $M_2$ generate a II$_1$ factor.","PeriodicalId":501114,"journal":{"name":"arXiv - MATH - Operator Algebras","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Trace spaces of full free product $C^*$-algebras\",\"authors\":\"Adrian Ioana, Pieter Spaas, Itamar Vigdorovich\",\"doi\":\"arxiv-2407.15985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We prove that the space of traces $\\\\text{T}(A)$ of the unital full free\\nproduct $A=A_1*A_2$ of two unital, separable $C^*$-algebras $A_1$ and $A_2$ is\\ntypically a Poulsen simplex, i.e., a simplex whose extreme points are dense. We\\ndeduce that $\\\\text{T}(A)$ is a Poulsen simplex whenever $A_1$ and $A_2$ have no\\n$1$-dimensional representations, e.g., if $A_1$ and $A_2$ are finite\\ndimensional with no $1$-dimensional direct summands. Additionally, we\\ncharacterize when the space of traces of a free product of two countable groups\\nis a Poulsen simplex. Our main technical contribution is a new perturbation\\nresult for pairs of von Neumann subalgebras $(M_1,M_2)$ of a tracial von\\nNeumann algebra $M$ which gives necessary conditions ensuring that $M_1$ and a\\nsmall unitary perturbation of $M_2$ generate a II$_1$ factor.\",\"PeriodicalId\":501114,\"journal\":{\"name\":\"arXiv - MATH - Operator Algebras\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-07-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - Operator Algebras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2407.15985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - Operator Algebras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2407.15985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明,两个独元、可分离的$C^*$-代数 $A_1$和 $A_2$的独元全自由积 $A=A_1*A_2$ 的迹空间 $\text{T}(A)$ 通常是一个普尔森单纯形,即一个极值点密集的单纯形。我们推导出,只要 $A_1$ 和 $A_2$ 没有$1$维的表示,例如,如果 $A_1$ 和 $A_2$ 是有限维的,没有$1$维的直接求和,$\text{T}(A)$ 就是一个 Poulsen 单纯形。此外,我们还描述了当两个可数群的自由积的迹空间是一个普尔森单纯形时的特征。我们的主要技术贡献是针对三元冯诺伊曼代数 $M$ 的一对冯诺伊曼子代数 $(M_1,M_2)$,给出了确保 $M_1$ 和 $M_2$ 的小单元扰动产生 II$_1$ 因子的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Trace spaces of full free product $C^*$-algebras
We prove that the space of traces $\text{T}(A)$ of the unital full free product $A=A_1*A_2$ of two unital, separable $C^*$-algebras $A_1$ and $A_2$ is typically a Poulsen simplex, i.e., a simplex whose extreme points are dense. We deduce that $\text{T}(A)$ is a Poulsen simplex whenever $A_1$ and $A_2$ have no $1$-dimensional representations, e.g., if $A_1$ and $A_2$ are finite dimensional with no $1$-dimensional direct summands. Additionally, we characterize when the space of traces of a free product of two countable groups is a Poulsen simplex. Our main technical contribution is a new perturbation result for pairs of von Neumann subalgebras $(M_1,M_2)$ of a tracial von Neumann algebra $M$ which gives necessary conditions ensuring that $M_1$ and a small unitary perturbation of $M_2$ generate a II$_1$ factor.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信